File size: 7,156 Bytes
a2db297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from abc import ABC, abstractmethod
from typing import List, Dict

import torch

from .utils import IMAGE_TOKEN_INDEX, IGNORE_INDEX, IMAGE_TOKEN


class ConversationFormatter(ABC):
    support_tokenizer_types = None

    def __init__(self, tokenizer):
        tokenizer_type = type(tokenizer).__name__
        assert tokenizer_type in self.support_tokenizer_types, \
            f'Invalid tokenizer type, expected one from `{self.support_tokenizer_types}`, but got `{tokenizer_type}`'

    @abstractmethod
    def format(self, conversations: List[Dict], generation_preface=None):
        pass

    @abstractmethod
    def format_query(self, query, generation_preface=""):
        pass


class QwenConversationFormatter(ConversationFormatter):
    support_tokenizer_types = ['QWenTokenizer', 'Qwen2TokenizerFast']

    def __init__(self, tokenizer):
        super().__init__(tokenizer)
        self.tokenizer = tokenizer
        self.from2role = {
            "system": "<|im_start|>system\n",
            "human": "<|im_start|>user\n",
            "gpt": "<|im_start|>assistant\n",
        }
        self.gpt_token_num = None
        self.im_end = "<|im_end|>"
        self.image_symbol = IMAGE_TOKEN
        self.image_token_index = IMAGE_TOKEN_INDEX
        self.ignore_index = IGNORE_INDEX
        self.default_system_prompt = "You are a helpful assistant."

    def _tokenize_with_image_symbol(self, text):
        text_chunks = [self.tokenizer(chunk, add_special_tokens=False).input_ids for chunk in
                       text.split(self.image_symbol)]
        token_ids = []
        num_chuck = len(text_chunks)
        for i, chunk in enumerate(text_chunks):
            token_ids.extend(chunk)
            if i < num_chuck - 1:
                token_ids.append(self.image_token_index)
        return token_ids

    def format(self, conversations: List[Dict], generation_preface=None):
        if self.gpt_token_num is None:
            self.gpt_token_num = len(self.tokenizer(self.from2role["gpt"], add_special_tokens=False).input_ids)

        if conversations[0]["from"] != "system":
            conversations.insert(0, {
                "from": "system",
                "value": self.default_system_prompt
            })

        if generation_preface is not None:
            conversations.append({
                "from": "gpt",
                "value": generation_preface
            })

        prompt = ""
        input_ids = []
        labels = []
        num_conversation = len(conversations)
        for i, conversation in enumerate(conversations):
            frm = conversation["from"]
            role = self.from2role[frm]
            message = conversation["value"]
            text = role + message
            if i < num_conversation - 1 or generation_preface is None:
                text += self.im_end
            if i < num_conversation - 1:
                text += '\n'
            prompt += text
            token_ids = self._tokenize_with_image_symbol(text)
            input_ids.extend(token_ids)
            label_ids = [self.ignore_index] * len(token_ids)
            if frm == "gpt":
                label_ids[self.gpt_token_num:] = token_ids[self.gpt_token_num:]
            labels.extend(label_ids)

        assert self._tokenize_with_image_symbol(prompt) == input_ids
        assert len(input_ids) == len(labels)
        input_ids = torch.tensor(input_ids, dtype=torch.long)
        labels = torch.tensor(labels, dtype=torch.long)

        return prompt, input_ids, labels

    def format_query(self, query, generation_preface=""):
        prompt, input_ids, _ = self.format([{
            "from": "human",
            "value": query
        }], generation_preface=generation_preface)

        return prompt, input_ids


class Llama3ConversationFormatter(ConversationFormatter):
    support_tokenizer_types = ['PreTrainedTokenizerFast']

    def __init__(self, tokenizer):
        super().__init__(tokenizer)
        self.tokenizer = tokenizer
        self.from2role = {
            "system": "<|start_header_id|>system<|end_header_id|>\n\n",
            "human": "<|start_header_id|>user<|end_header_id|>\n\n",
            "gpt": "<|start_header_id|>assistant<|end_header_id|>\n\n",
        }
        self.gpt_token_num = None
        self.im_end = "<|eot_id|>"
        self.image_symbol = IMAGE_TOKEN
        self.image_token_index = IMAGE_TOKEN_INDEX
        self.ignore_index = IGNORE_INDEX
        self.default_system_prompt = "You are a helpful and honest multimodal assistant."
        self.bos_token = "<|begin_of_text|>"
        self.bos_token_ids = None

    def _tokenize_with_image_symbol(self, text):
        text_chunks = [self.tokenizer(chunk, add_special_tokens=False).input_ids for chunk in
                       text.split(self.image_symbol)]
        token_ids = []
        num_chuck = len(text_chunks)
        for i, chunk in enumerate(text_chunks):
            token_ids.extend(chunk)
            if i < num_chuck - 1:
                token_ids.append(self.image_token_index)
        return token_ids

    def format(self, conversations: List[Dict], generation_preface=None):
        if self.gpt_token_num is None:
            self.gpt_token_num = len(self.tokenizer(self.from2role["gpt"], add_special_tokens=False).input_ids)

        if self.bos_token_ids is None:
            self.bos_token_ids = self.tokenizer(self.bos_token, add_special_tokens=False).input_ids

        if conversations[0]["from"] != "system":
            conversations.insert(0, {
                "from": "system",
                "value": self.default_system_prompt
            })

        if generation_preface is not None:
            conversations.append({
                "from": "gpt",
                "value": generation_preface
            })

        prompt = "" + self.bos_token
        input_ids = [] + self.bos_token_ids
        labels = [] + [IGNORE_INDEX] * len(input_ids)
        num_conversation = len(conversations)
        for i, conversation in enumerate(conversations):
            frm = conversation["from"]
            role = self.from2role[frm]
            message = conversation["value"].strip()
            text = role + message
            if i < num_conversation - 1 or generation_preface is None:
                text += self.im_end
            prompt += text
            token_ids = self._tokenize_with_image_symbol(text)
            input_ids.extend(token_ids)
            label_ids = [self.ignore_index] * len(token_ids)
            if frm == "gpt":
                label_ids[self.gpt_token_num:] = token_ids[self.gpt_token_num:]
            labels.extend(label_ids)

        assert self._tokenize_with_image_symbol(prompt) == input_ids
        assert len(input_ids) == len(labels)
        input_ids = torch.tensor(input_ids, dtype=torch.long)
        labels = torch.tensor(labels, dtype=torch.long)

        return prompt, input_ids, labels

    def format_query(self, query, generation_preface=""):
        prompt, input_ids, _ = self.format([{
            "from": "human",
            "value": query
        }], generation_preface=generation_preface)

        return prompt, input_ids