|
--- |
|
license: apache-2.0 |
|
pipeline_tag: image-to-text |
|
tags: |
|
- image-captioning |
|
- image-to-text |
|
--- |
|
|
|
世萌验证码识别模型,训练集60000张图片,基于vit-gpt2微调 |
|
|
|
## Use in Transformers |
|
```python |
|
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer |
|
import torch |
|
from PIL import Image |
|
|
|
model = VisionEncoderDecoderModel.from_pretrained("AIris-Channel/vit-gpt2-verifycode-caption") |
|
feature_extractor = ViTImageProcessor.from_pretrained("AIris-Channel/vit-gpt2-verifycode-caption") |
|
tokenizer = AutoTokenizer.from_pretrained("AIris-Channel/vit-gpt2-verifycode-caption") |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
|
|
max_length = 16 |
|
num_beams = 4 |
|
gen_kwargs = {"max_length": max_length, "num_beams": num_beams} |
|
def predict_step(image_paths): |
|
images = [] |
|
for image_path in image_paths: |
|
i_image = Image.open(image_path) |
|
if i_image.mode != "RGB": |
|
i_image = i_image.convert(mode="RGB") |
|
|
|
images.append(i_image) |
|
|
|
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values |
|
pixel_values = pixel_values.to(device) |
|
|
|
output_ids = model.generate(pixel_values, **gen_kwargs) |
|
|
|
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
|
preds = [pred.strip() for pred in preds] |
|
return preds |
|
|
|
pred=predict_step(['ZZZTVESE.jpg']) |
|
print(pred) #zzztvese |
|
``` |