Emotion2Vec-S

For more information, please refer to github C2SER

Introduction

This repository contains the implementation of Emotion2Vec-S, a self-supervised learning (SSL) model for speech emotion recognition, as presented in our paper "Steering Language Model to Stable Speech Emotion Recognition via Contextual Perception and Chain of Thought".

Requirements and Installation

This project follows the fairseq installation process.

Requirements

  • PyTorch version >= 1.10.0
  • Python version >= 3.8

Installation

To install fairseq and develop locally:

git clone https://github.com/pytorch/fairseq
cd fairseq
pip install --editable ./

Feature Extraction

You can download the pre-trained Emotion2vec-S model and put it in the ./Emotion2Vec-S/ckpt folder. Meanwhile,we have provided the pretrained checkpoints in the huggingface model hub. You can also download ckpt file from here. We also provide here the feature files for the Emo-Emilia dataset extracted using Emotion2vec-S.

If you want to extract features using Emotion2Vec-S,you will also need to provide a wav.scp file and place it in the ./Emotion2Vec-S directory. Here is an example of the wav.scp file::

audio_name1 /path/to/audio_name1.wav
audio_name2 /path/to/audio_name2.wav
audio_name3 /path/to/audio_name3.wav

Next, you can directly run the following code to extract features:

import torch
import os
import sys
import json
import numpy as np
import argparse
from tqdm import tqdm
import torchaudio
import torch.nn.functional as F
import fairseq
from dataclasses import dataclass

SAMPLING_RATE=16000

@dataclass
class UserDirModule:
    user_dir: str

def extract_fairseq_feature(wav_path, model, device):
    try:
        wav, sr = torchaudio.load(wav_path)
        # 合并多声道为单声道(取平均)
        if wav.size(0) > 1:
            wav = torch.mean(wav, dim=0, keepdim=True)
        if sr != SAMPLING_RATE:
            wav = torchaudio.functional.resample(wav, sr, SAMPLING_RATE)
        wav = wav[0, :].view(1, -1)
        wav = wav.to(device)
        out = model.extract_features(wav)
        return out
    except Exception as e:
        print(f"Error processing audio file {wav_path}: {e}")
        return None

if __name__ == '__main__':

    parser = argparse.ArgumentParser()
    parser.add_argument('--model_path', type=str, default="./Emotion2Vec-S/ckpt/checkpoint.pt")
    parser.add_argument('--model_dir', type=str, default="./Emotion2Vec-S/examples/data2vec/")
    parser.add_argument('--dump_dir', type=str, default="./Emotion2Vec-S/features_frm")
    parser.add_argument('--device', type=str, default='cuda')
    parser.add_argument('--data', type=str, default="./Emotion2Vec-S/wav.scp")
    parser.add_argument('--level', type=str, default="frame", help="frame or utterance")
    args = parser.parse_args()

    data = {}
    with open(args.data, 'r') as f:
        for line in f:
            seg_id, wav_path = line.strip().split(maxsplit=1)
            data[seg_id] = wav_path

    os.makedirs(args.dump_dir, exist_ok=True)

    seg_ids = data.keys()
    print(f'Loaded {len(seg_ids)} audio entries')
    # load models
    my_model_path = UserDirModule(args.model_dir)
    fairseq.utils.import_user_module(my_model_path)
    model, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([args.model_path])
    model = model[0].to(args.device)
    
    for seg_id in tqdm(seg_ids):

        wav_path = data[seg_id]
        if not os.path.exists(wav_path):
            print(f"WARNING: {wav_path} does not exist")
            continue 
        try:
            torchaudio.load(wav_path)
        except:
            print(f'ERROR: Failed to load {wav_path}')
            continue         

        feat = extract_fairseq_feature(wav_path, model, args.device)

        if feat is not None:
            if args.level == 'frame':
                feat = feat['x'].cpu().detach().numpy()[0]
            elif args.level == 'utterance':
                feat = feat['utt_x'].cpu().detach().numpy()[0] 
            else:
                raise ValueError("Unknown level: {}".format(args.level))            

            save_path = os.path.join(args.dump_dir, f"{seg_id}.npy")
            os.makedirs(os.path.dirname(save_path), exist_ok=True)
            np.save(save_path, feat)
            print(f"Processed: {seg_id} | Shape: {feat.shape} | Saved to: {save_path}")
        else:
            print(f"Skipped problematic file: {seg_id}")

Alternatively, you can adjust the code according to your needs. The code path is ./Emotion2Vec-S/speech_feature_extraction.py. You can also use the ./Emotion2Vec-S/extract_feature.sh script to batch process features for multiple datasets. The script supports parallel processing and offers the following parameters:

  • --model_path: Path to the checkpoint file
  • --model_dir: Path to the model
  • --dump_dir: Directory to save extracted features
  • --device: Device to run the model on (e.g., 'cuda:0')
  • --data: Path to the dataset scp file
  • --level: Level of feature (frame level or utterance level)

2. Training and testing on EmoBox using extracted features

If you want to test our model on other datasets using EmoBox. There is also an example provided below, which you can modify to suit your needs:

Use k-fold cross-validation with learning rates (1e-3, 1e-4) and hidden sizes (128, 256):

cd examples/sb
data=/path/to/your/data_files
lrs=(1e-3 1e-4)               # Learning rate list
hidden_sizes=(128 256)        # Hidden size list
gpus=(0 1 2 3)                # GPU list
task_id=0
declare -A dataset_folds=(
    ["mesd"]=1
)
declare -A dataset_classes=(
    ["mesd"]=6
)
datasets=("mesd")

for dataset in "${datasets[@]}"; do
    folds=${dataset_folds[$dataset]}
    n_classes=${dataset_classes[$dataset]}

    for lr in "${lrs[@]}"; do
        for hidden_size in "${hidden_sizes[@]}"; do
            gpu=${gpus[$task_id % ${#gpus[@]}]}
            export CUDA_VISIBLE_DEVICES=$gpu
            task_number=$((task_id + 1))
            for fold in $(seq 1 $folds); do
                echo "Training fold $fold with lr=$lr, hidden_size=$hidden_size on GPU $gpu, task_number=$task_number, dataset=$dataset..."
                python3 train.py \
                    hparams/data2vec2-large_freeze.yaml \
                    --output_folder /path/to/your/${dataset}-S/fold${fold}_lr${lr}_hidden${hidden_size} \
                    --seed 1234 \
                    --batch_size 32 \
                    --lr $lr \
                    --train_annotation ${data}/${dataset}/fold_${fold}/${dataset}_train_fold_${fold}.json \
                    --test_annotation ${data}/${dataset}/fold_${fold}/${dataset}_test_fold_${fold}.json \
                    --number_of_epochs 100 \
                    --feat_dir /path/to/your/dump_${dataset}-S \
                    --label_map ${data}/${dataset}/label_map.json \
                    --device cuda \
                    --out_n_neurons ${n_classes} \
                    --hidden_size $hidden_size &
            done
            task_id=$((task_id + 1))
        done
    done
done

wait
echo "All training tasks completed."
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Collection including ASLP-lab/Emotion2Vec-S