YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
This is a test model
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from webscout import WEBS
import json
# Load the HelpingAI-flash model
model = AutoModelForCausalLM.from_pretrained("Abhaykoul/HelpingAI-function", trust_remote_code=True).to("cuda")
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained("Abhaykoul/HelpingAI-function", trust_remote_code=True)
# Initialize TextStreamer for smooth conversation flow
streamer = TextStreamer(tokenizer)
# Define the prompt template
prompt_template = """
<|im_start|>system: {system}
<|im_end|>
<|im_start|>user: {insaan}
<|im_end|>
<|im_start|>assistant:
"""
user_query = "tell me about SearchGPT by openai"
# Prepare the prompt
# Web Search Tool Class
class WebSearchTool:
"""A web search tool using DuckDuckGo."""
def __init__(self):
self.webs = WEBS()
def search(self, query: str) -> str:
"""Performs a web search and returns a summary of the results."""
results = self.webs.text(query, max_results=5)
summary = "\n".join(
f"**{result['title']}**\n{result['body']}\n{result['href']}"
for result in results
)
return summary, results
# Initialize the web search tool
web_search_tool = WebSearchTool()
def use_tools(tools, user_query):
"""Use tools to handle specific user queries."""
# Example of using the web search tool
if any(tool["name"] == "web_search" for tool in tools):
search_summary, search_results = web_search_tool.search(user_query)
# Prepare the response from the model
detailed_prompt = f"User query: {user_query}\n\nWeb search results:\n{search_summary}\n\nProvide a comprehensive answer based on this information."
# Tokenize the detailed prompt
inputs = tokenizer(detailed_prompt, return_tensors="pt", return_attention_mask=False).to("cuda")
# Generate the response using the model
generated_text = model.generate(**inputs, max_length=3084, top_p=0.95, do_sample=True, temperature=0.6, use_cache=True, streamer=streamer)
# Decode the response
response = tokenizer.decode(generated_text[0], skip_special_tokens=True)
print(response)
# Example tools
tools = [
{
"name": "web_search",
"description": "Search the web for information.",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The search query.",
},
},
"required": ["query"],
}
}
]
# Example usage of the tools
use_tools(tools, user_query)
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.