VitDisease / README.md
Abhiram4's picture
End of training
a4e99ff verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - image_folder
metrics:
  - accuracy
model-index:
  - name: VitDisease
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: image_folder
          type: image_folder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9975817923186344

VitDisease

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the image_folder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3736
  • Accuracy: 0.9976

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7869 1.0 192 0.7516 0.9927
0.3828 2.0 384 0.3736 0.9976
0.299 3.0 576 0.3079 0.9976

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3