metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- image_folder
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-abhi1-finetuned
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: image_folder
type: image_folder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.16632443531827515
vit-base-patch16-224-abhi1-finetuned
This model is a fine-tuned version of google/vit-base-patch16-224 on the image_folder dataset. It achieves the following results on the evaluation set:
- Loss: 4.1858
- Accuracy: 0.1663
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
4.9292 | 0.99 | 17 | 4.6892 | 0.0380 |
4.5033 | 1.97 | 34 | 4.3391 | 0.1191 |
4.1992 | 2.96 | 51 | 4.1858 | 0.1663 |
Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3