See axolotl config
axolotl version: 0.6.0
adapter: lora
base_model: Korabbit/llama-2-ko-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: /workspace/axolotl/data/prepared
datasets:
- ds_type: json
format: custom
path: Aivesa/dataset_503b2cb9-e990-4d34-b81a-a3d784ed7e35
type:
field_input: dense_caption
field_instruction: video_id
field_output: short_caption
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: Aivesa/0b0ca1dc-e3b2-4645-9c4b-2296d30b04e0
hub_private_repo: true
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: /workspace/axolotl/outputs
pad_to_sequence_len: true
push_to_hub: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_safetensors: true
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
use_accelerate: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 503b2cb9-e990-4d34-b81a-a3d784ed7e35
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 503b2cb9-e990-4d34-b81a-a3d784ed7e35
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
0b0ca1dc-e3b2-4645-9c4b-2296d30b04e0
This model is a fine-tuned version of Korabbit/llama-2-ko-7b on the Aivesa/dataset_503b2cb9-e990-4d34-b81a-a3d784ed7e35 dataset. It achieves the following results on the evaluation set:
- Loss: 1.2094
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.3018 | 0.0001 | 3 | 2.1908 |
2.0662 | 0.0001 | 6 | 1.8127 |
1.1785 | 0.0002 | 9 | 1.2094 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.0a0+e000cf0ad9.nv24.10
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 7
Model tree for Aivesa/0b0ca1dc-e3b2-4645-9c4b-2296d30b04e0
Base model
Korabbit/llama-2-ko-7b