AkshitaS commited on
Commit
d84418a
·
verified ·
1 Parent(s): 79b4555

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ widget: []
9
+ pipeline_tag: sentence-similarity
10
+ ---
11
+
12
+ # SentenceTransformer
13
+
14
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
15
+
16
+ ## Model Details
17
+
18
+ ### Model Description
19
+ - **Model Type:** Sentence Transformer
20
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
21
+ - **Maximum Sequence Length:** 512 tokens
22
+ - **Output Dimensionality:** 768 tokens
23
+ - **Similarity Function:** Cosine Similarity
24
+ <!-- - **Training Dataset:** Unknown -->
25
+ <!-- - **Language:** Unknown -->
26
+ <!-- - **License:** Unknown -->
27
+
28
+ ### Model Sources
29
+
30
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
31
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
32
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
33
+
34
+ ### Full Model Architecture
35
+
36
+ ```
37
+ CustomSentenceTransformer(
38
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
39
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
40
+ )
41
+ ```
42
+
43
+ ## Usage
44
+
45
+ ### Direct Usage (Sentence Transformers)
46
+
47
+ First install the Sentence Transformers library:
48
+
49
+ ```bash
50
+ pip install -U sentence-transformers
51
+ ```
52
+
53
+ Then you can load this model and run inference.
54
+ ```python
55
+ from sentence_transformers import SentenceTransformer
56
+
57
+ # Download from the 🤗 Hub
58
+ model = SentenceTransformer("sentence_transformers_model_id")
59
+ # Run inference
60
+ sentences = [
61
+ 'The weather is lovely today.',
62
+ "It's so sunny outside!",
63
+ 'He drove to the stadium.',
64
+ ]
65
+ embeddings = model.encode(sentences)
66
+ print(embeddings.shape)
67
+ # [3, 768]
68
+
69
+ # Get the similarity scores for the embeddings
70
+ similarities = model.similarity(embeddings, embeddings)
71
+ print(similarities.shape)
72
+ # [3, 3]
73
+ ```
74
+
75
+ <!--
76
+ ### Direct Usage (Transformers)
77
+
78
+ <details><summary>Click to see the direct usage in Transformers</summary>
79
+
80
+ </details>
81
+ -->
82
+
83
+ <!--
84
+ ### Downstream Usage (Sentence Transformers)
85
+
86
+ You can finetune this model on your own dataset.
87
+
88
+ <details><summary>Click to expand</summary>
89
+
90
+ </details>
91
+ -->
92
+
93
+ <!--
94
+ ### Out-of-Scope Use
95
+
96
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
97
+ -->
98
+
99
+ <!--
100
+ ## Bias, Risks and Limitations
101
+
102
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
103
+ -->
104
+
105
+ <!--
106
+ ### Recommendations
107
+
108
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
109
+ -->
110
+
111
+ ## Training Details
112
+
113
+ ### Framework Versions
114
+ - Python: 3.12.3
115
+ - Sentence Transformers: 3.0.0
116
+ - Transformers: 4.41.2
117
+ - PyTorch: 2.3.1
118
+ - Accelerate: 0.30.1
119
+ - Datasets: 2.19.1
120
+ - Tokenizers: 0.19.1
121
+
122
+ ## Citation
123
+
124
+ ### BibTeX
125
+
126
+ <!--
127
+ ## Glossary
128
+
129
+ *Clearly define terms in order to be accessible across audiences.*
130
+ -->
131
+
132
+ <!--
133
+ ## Model Card Authors
134
+
135
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
136
+ -->
137
+
138
+ <!--
139
+ ## Model Card Contact
140
+
141
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
142
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./train/models/1_parallel_data_p2/1100000",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "embedding_size": 768,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 197285
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.3.1",
4
+ "transformers": "4.35.0.dev0",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5f3340b73ad5a63e0820d9a7e885ab67c0178b13a1bf74e7951e161f19ce8df
3
+ size 950247272
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "103": {
20
+ "content": "[MASK]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[CLS]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "105": {
36
+ "content": "[SEP]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "lowercase": false,
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": false,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff