yt_text_summarizer / README.md
Akshith4's picture
Akshith4/text_summarizer
ccbfc8c verified
|
raw
history blame
1.97 kB
metadata
license: mit
base_model: facebook/bart-large-xsum
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: bart_samsum
    results: []

bart_samsum

This model is a fine-tuned version of facebook/bart-large-xsum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4469
  • Rouge1: 54.1048
  • Rouge2: 29.4288
  • Rougel: 44.7135
  • Rougelsum: 49.7824
  • Gen Len: 30.1333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.4237 0.9997 1841 1.5096 52.578 27.25 43.167 47.8705 29.2381
1.0961 2.0 3683 1.4730 53.0543 28.2549 43.5716 48.5957 30.1355
0.8667 2.9997 5524 1.5579 52.8621 28.224 43.9952 48.5389 28.0488
0.7011 3.9989 7364 1.6067 52.4772 27.6106 43.5235 48.0805 29.8877

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1