|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- null |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model_index: |
|
- name: bert-srb-ner-setimes |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
metric: |
|
name: Accuracy |
|
type: accuracy |
|
value: 0.9632618605436434 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-srb-ner-setimes |
|
|
|
This model was trained from scratch on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1682 |
|
- Precision: 0.8153 |
|
- Recall: 0.8353 |
|
- F1: 0.8251 |
|
- Accuracy: 0.9633 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 207 | 0.2003 | 0.6991 | 0.7440 | 0.7209 | 0.9415 | |
|
| No log | 2.0 | 414 | 0.1597 | 0.7202 | 0.7770 | 0.7475 | 0.9509 | |
|
| 0.2342 | 3.0 | 621 | 0.1505 | 0.7619 | 0.8012 | 0.7811 | 0.9558 | |
|
| 0.2342 | 4.0 | 828 | 0.1710 | 0.7822 | 0.8020 | 0.7920 | 0.9564 | |
|
| 0.082 | 5.0 | 1035 | 0.1434 | 0.7969 | 0.8277 | 0.8120 | 0.9614 | |
|
| 0.082 | 6.0 | 1242 | 0.1526 | 0.8001 | 0.8350 | 0.8171 | 0.9625 | |
|
| 0.082 | 7.0 | 1449 | 0.1590 | 0.8061 | 0.8384 | 0.8219 | 0.9633 | |
|
| 0.0353 | 8.0 | 1656 | 0.1616 | 0.8143 | 0.8296 | 0.8219 | 0.9634 | |
|
| 0.0353 | 9.0 | 1863 | 0.1684 | 0.8167 | 0.8367 | 0.8265 | 0.9631 | |
|
| 0.017 | 10.0 | 2070 | 0.1682 | 0.8153 | 0.8353 | 0.8251 | 0.9633 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.9.2 |
|
- Pytorch 1.9.0 |
|
- Datasets 1.11.0 |
|
- Tokenizers 0.10.1 |
|
|