|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- null |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
language: |
|
- sr |
|
model_index: |
|
- name: bert-srb-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
metric: |
|
name: Accuracy |
|
type: accuracy |
|
value: 0.9641060273510046 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-srb-ner |
|
|
|
This model was finetuned from Aleksandar/bert-srb-cased-oscar on the setimes.SR dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1647 |
|
- Precision: 0.8247 |
|
- Recall: 0.8454 |
|
- F1: 0.8349 |
|
- Accuracy: 0.9641 |
|
|
|
## Model description |
|
|
|
Default settings for BERT model, finetuned with batch size of 16. |
|
|
|
## Intended uses & limitations |
|
| Tag (IOB) | Numerical representation | Meaning (Beginning = B., Inside = I.) | |
|
|-------------|--------------------------|------------------------------------------| |
|
| O | 0 | Other | |
|
| B-per | 1 | B.Person | |
|
| I-per | 2 | I. Person | |
|
| B-org | 3 | B. organization | |
|
| I-org | 4 | I. organization | |
|
| B-loc | 5 | B. location | |
|
| I-loc | 6 | I. location | |
|
| B-misc | 7 | B. Miscellaneous | |
|
| I-misc | 8 | I. Miscellaneous | |
|
| B-deriv-per | 9 | B. Derived Person | |
|
|
|
MIT license |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 207 | 0.2040 | 0.7006 | 0.7466 | 0.7228 | 0.9411 | |
|
| No log | 2.0 | 414 | 0.1561 | 0.7299 | 0.7868 | 0.7573 | 0.9519 | |
|
| 0.2313 | 3.0 | 621 | 0.1455 | 0.7693 | 0.7992 | 0.7840 | 0.9567 | |
|
| 0.2313 | 4.0 | 828 | 0.1628 | 0.7760 | 0.8037 | 0.7896 | 0.9570 | |
|
| 0.0828 | 5.0 | 1035 | 0.1424 | 0.7997 | 0.8299 | 0.8145 | 0.9604 | |
|
| 0.0828 | 6.0 | 1242 | 0.1512 | 0.7983 | 0.8361 | 0.8168 | 0.9618 | |
|
| 0.0828 | 7.0 | 1449 | 0.1587 | 0.8084 | 0.8415 | 0.8246 | 0.9627 | |
|
| 0.0362 | 8.0 | 1656 | 0.1613 | 0.8154 | 0.8358 | 0.8255 | 0.9632 | |
|
| 0.0362 | 9.0 | 1863 | 0.1685 | 0.8211 | 0.8429 | 0.8319 | 0.9632 | |
|
| 0.0174 | 10.0 | 2070 | 0.1647 | 0.8247 | 0.8454 | 0.8349 | 0.9641 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.9.2 |
|
- Pytorch 1.9.0 |
|
- Datasets 1.11.0 |
|
- Tokenizers 0.10.1 |
|
|