bert-srb-ner / README.md
Aleksandar's picture
add model
1774bdf
|
raw
history blame
3.41 kB
---
tags:
- generated_from_trainer
datasets:
- wikiann
metrics:
- precision
- recall
- f1
- accuracy
model_index:
- name: bert-srb-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wikiann
type: wikiann
args: sr
metric:
name: Accuracy
type: accuracy
value: 0.9546696220907545
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-srb-ner
This model was trained from scratch on the wikiann dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3561
- Precision: 0.8909
- Recall: 0.9082
- F1: 0.8995
- Accuracy: 0.9547
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.3907 | 1.0 | 625 | 0.2316 | 0.8255 | 0.8314 | 0.8285 | 0.9259 |
| 0.2091 | 2.0 | 1250 | 0.1920 | 0.8598 | 0.8731 | 0.8664 | 0.9420 |
| 0.1562 | 3.0 | 1875 | 0.1833 | 0.8608 | 0.8820 | 0.8713 | 0.9441 |
| 0.0919 | 4.0 | 2500 | 0.1985 | 0.8712 | 0.8886 | 0.8798 | 0.9476 |
| 0.0625 | 5.0 | 3125 | 0.2195 | 0.8762 | 0.8923 | 0.8842 | 0.9485 |
| 0.0545 | 6.0 | 3750 | 0.2320 | 0.8706 | 0.9004 | 0.8852 | 0.9495 |
| 0.0403 | 7.0 | 4375 | 0.2459 | 0.8817 | 0.8957 | 0.8887 | 0.9505 |
| 0.0269 | 8.0 | 5000 | 0.2603 | 0.8813 | 0.9021 | 0.8916 | 0.9516 |
| 0.0193 | 9.0 | 5625 | 0.2916 | 0.8812 | 0.8949 | 0.8880 | 0.9500 |
| 0.0162 | 10.0 | 6250 | 0.2938 | 0.8814 | 0.9025 | 0.8918 | 0.9520 |
| 0.0134 | 11.0 | 6875 | 0.3330 | 0.8809 | 0.8961 | 0.8885 | 0.9497 |
| 0.0076 | 12.0 | 7500 | 0.3141 | 0.8840 | 0.9025 | 0.8932 | 0.9524 |
| 0.0069 | 13.0 | 8125 | 0.3292 | 0.8819 | 0.9065 | 0.8940 | 0.9535 |
| 0.0053 | 14.0 | 8750 | 0.3454 | 0.8844 | 0.9018 | 0.8930 | 0.9523 |
| 0.0038 | 15.0 | 9375 | 0.3519 | 0.8912 | 0.9061 | 0.8986 | 0.9539 |
| 0.0034 | 16.0 | 10000 | 0.3437 | 0.8894 | 0.9038 | 0.8965 | 0.9539 |
| 0.0024 | 17.0 | 10625 | 0.3518 | 0.8896 | 0.9072 | 0.8983 | 0.9543 |
| 0.0018 | 18.0 | 11250 | 0.3572 | 0.8877 | 0.9072 | 0.8973 | 0.9543 |
| 0.0015 | 19.0 | 11875 | 0.3554 | 0.8910 | 0.9081 | 0.8994 | 0.9549 |
| 0.0011 | 20.0 | 12500 | 0.3561 | 0.8909 | 0.9082 | 0.8995 | 0.9547 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0
- Datasets 1.11.0
- Tokenizers 0.10.1