machineuser
Automatic correction of README.md metadata. Contact [email protected] for any question
2b1db30
|
raw
history blame
3.33 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model_index:
  - name: distilbert-srb-ner-setimes
    results:
      - task:
          name: Token Classification
          type: token-classification
        metric:
          name: Accuracy
          type: accuracy
          value: 0.9665376552169005

distilbert-srb-ner-setimes

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1838
  • Precision: 0.8370
  • Recall: 0.8617
  • F1: 0.8492
  • Accuracy: 0.9665

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 104 0.2319 0.6668 0.7029 0.6844 0.9358
No log 2.0 208 0.1850 0.7265 0.7508 0.7385 0.9469
No log 3.0 312 0.1584 0.7555 0.7937 0.7741 0.9538
No log 4.0 416 0.1484 0.7644 0.8128 0.7879 0.9571
0.1939 5.0 520 0.1383 0.7850 0.8131 0.7988 0.9604
0.1939 6.0 624 0.1409 0.7914 0.8359 0.8130 0.9632
0.1939 7.0 728 0.1526 0.8176 0.8392 0.8283 0.9637
0.1939 8.0 832 0.1536 0.8195 0.8409 0.8301 0.9641
0.1939 9.0 936 0.1538 0.8242 0.8523 0.8380 0.9661
0.0364 10.0 1040 0.1612 0.8228 0.8413 0.8319 0.9652
0.0364 11.0 1144 0.1721 0.8289 0.8503 0.8395 0.9656
0.0364 12.0 1248 0.1645 0.8301 0.8590 0.8443 0.9663
0.0364 13.0 1352 0.1747 0.8352 0.8540 0.8445 0.9665
0.0364 14.0 1456 0.1703 0.8277 0.8573 0.8422 0.9663
0.011 15.0 1560 0.1770 0.8314 0.8624 0.8466 0.9665
0.011 16.0 1664 0.1903 0.8399 0.8537 0.8467 0.9661
0.011 17.0 1768 0.1837 0.8363 0.8590 0.8475 0.9665
0.011 18.0 1872 0.1820 0.8338 0.8570 0.8453 0.9667
0.011 19.0 1976 0.1855 0.8382 0.8620 0.8499 0.9666
0.0053 20.0 2080 0.1838 0.8370 0.8617 0.8492 0.9665

Framework versions

  • Transformers 4.9.2
  • Pytorch 1.9.0
  • Datasets 1.11.0
  • Tokenizers 0.10.1