Aleksandar's picture
add model
866c201
|
raw
history blame
3.34 kB
---
tags:
- generated_from_trainer
datasets:
- null
metrics:
- precision
- recall
- f1
- accuracy
model_index:
- name: electra-srb-ner-setimes
results:
- task:
name: Token Classification
type: token-classification
metric:
name: Accuracy
type: accuracy
value: 0.9546789604788638
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-srb-ner-setimes
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2804
- Precision: 0.8286
- Recall: 0.8081
- F1: 0.8182
- Accuracy: 0.9547
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 104 | 0.2981 | 0.6737 | 0.6113 | 0.6410 | 0.9174 |
| No log | 2.0 | 208 | 0.2355 | 0.7279 | 0.6701 | 0.6978 | 0.9307 |
| No log | 3.0 | 312 | 0.2079 | 0.7707 | 0.7062 | 0.7371 | 0.9402 |
| No log | 4.0 | 416 | 0.2078 | 0.7689 | 0.7479 | 0.7582 | 0.9449 |
| 0.2391 | 5.0 | 520 | 0.2089 | 0.8083 | 0.7476 | 0.7767 | 0.9484 |
| 0.2391 | 6.0 | 624 | 0.2199 | 0.7981 | 0.7726 | 0.7851 | 0.9487 |
| 0.2391 | 7.0 | 728 | 0.2528 | 0.8205 | 0.7749 | 0.7971 | 0.9511 |
| 0.2391 | 8.0 | 832 | 0.2265 | 0.8074 | 0.8003 | 0.8038 | 0.9524 |
| 0.2391 | 9.0 | 936 | 0.2843 | 0.8265 | 0.7716 | 0.7981 | 0.9504 |
| 0.0378 | 10.0 | 1040 | 0.2450 | 0.8024 | 0.8019 | 0.8021 | 0.9520 |
| 0.0378 | 11.0 | 1144 | 0.2550 | 0.8116 | 0.7986 | 0.8051 | 0.9519 |
| 0.0378 | 12.0 | 1248 | 0.2706 | 0.8208 | 0.7957 | 0.8081 | 0.9532 |
| 0.0378 | 13.0 | 1352 | 0.2664 | 0.8040 | 0.8035 | 0.8038 | 0.9530 |
| 0.0378 | 14.0 | 1456 | 0.2571 | 0.8011 | 0.8110 | 0.8060 | 0.9529 |
| 0.0099 | 15.0 | 1560 | 0.2673 | 0.8051 | 0.8129 | 0.8090 | 0.9534 |
| 0.0099 | 16.0 | 1664 | 0.2733 | 0.8074 | 0.8087 | 0.8081 | 0.9529 |
| 0.0099 | 17.0 | 1768 | 0.2835 | 0.8254 | 0.8074 | 0.8163 | 0.9543 |
| 0.0099 | 18.0 | 1872 | 0.2771 | 0.8222 | 0.8081 | 0.8151 | 0.9545 |
| 0.0099 | 19.0 | 1976 | 0.2776 | 0.8237 | 0.8084 | 0.8160 | 0.9546 |
| 0.0044 | 20.0 | 2080 | 0.2804 | 0.8286 | 0.8081 | 0.8182 | 0.9547 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0
- Datasets 1.11.0
- Tokenizers 0.10.1