|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-de |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-de |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.6824 |
|
- Rouge1: 16.5186 |
|
- Rouge2: 10.0545 |
|
- Rougel: 16.2944 |
|
- Rougelsum: 16.2835 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 8.4221 | 1.0 | 651 | 3.1302 | 13.8778 | 6.1808 | 13.6862 | 13.6699 | |
|
| 4.1085 | 2.0 | 1302 | 2.8969 | 13.7773 | 7.1463 | 13.7471 | 13.7448 | |
|
| 3.7329 | 3.0 | 1953 | 2.8285 | 13.3819 | 6.5587 | 13.3349 | 13.1454 | |
|
| 3.5489 | 4.0 | 2604 | 2.7547 | 16.886 | 9.8816 | 16.8247 | 16.8231 | |
|
| 3.4223 | 5.0 | 3255 | 2.7334 | 16.6755 | 10.0955 | 16.5465 | 16.5025 | |
|
| 3.3509 | 6.0 | 3906 | 2.6994 | 16.851 | 10.5061 | 16.6289 | 16.7191 | |
|
| 3.2895 | 7.0 | 4557 | 2.6871 | 16.4401 | 10.0994 | 16.2156 | 16.224 | |
|
| 3.281 | 8.0 | 5208 | 2.6824 | 16.5186 | 10.0545 | 16.2944 | 16.2835 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|