Question about the Figure 5 in ArXiv
#3
by
BestWishYsh
- opened
We utilized the t-SNE method provided by sklearn and maintained the default parameters. The code is as follows:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
X = np.load('emb.np')
plt.rcParams['ytick.labelsize'] = 24
plt.rcParams['xtick.labelsize'] = 24
y = np.concatenate([[0] * 1000, [1] * 1000, [2]*1000])
tsne = TSNE(n_components=2, random_state=42)
X_tsne = tsne.fit_transform(X_pca)
colors = ['g', 'b', 'r']
markers = ['o', 's', '^']
fig, ax = plt.subplots(figsize=(10, 8))
colors = ['g', 'b', 'r']
markers = ['o', 's', '^']
ax.spines['top'].set_color('black')
ax.spines['bottom'].set_color('black')
ax.spines['left'].set_color('black')
ax.spines['right'].set_color('black')
names = ['Text', 'Image', 'Text+Image']
for i, c, m in zip(range(3), colors, markers):
plt.scatter(X_tsne[y == i, 0], X_tsne[y == i, 1], color=c, marker=m, label=names[i], alpha=1.0)
plt.xticks([])
plt.yticks([])
ax.legend(fontsize=24,loc='lower right')
plt.show()
@zyznull
Could you provide the full code? And how to get X_pca
and how to use from sklearn.decomposition import PCA
, thanks!
And I am confused about how to obtain the text-image fusion features of CLIP, since its text encoder and image encoder are separate.