|
--- |
|
tags: |
|
- mteb |
|
- sentence-transformers |
|
- transformers |
|
- Qwen2 |
|
- sentence-similarity |
|
license: apache-2.0 |
|
model-index: |
|
- name: gte-qwen2-7B-instruct |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 91.31343283582089 |
|
- type: ap |
|
value: 67.64251402604096 |
|
- type: f1 |
|
value: 87.53372530755692 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046 |
|
metrics: |
|
- type: accuracy |
|
value: 97.497825 |
|
- type: ap |
|
value: 96.30329547047529 |
|
- type: f1 |
|
value: 97.49769793778039 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 62.564 |
|
- type: f1 |
|
value: 60.975777935041066 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/arguana |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a |
|
metrics: |
|
- type: map_at_1 |
|
value: 36.486000000000004 |
|
- type: map_at_10 |
|
value: 54.842 |
|
- type: map_at_100 |
|
value: 55.206999999999994 |
|
- type: map_at_1000 |
|
value: 55.206999999999994 |
|
- type: map_at_3 |
|
value: 49.893 |
|
- type: map_at_5 |
|
value: 53.105000000000004 |
|
- type: mrr_at_1 |
|
value: 37.34 |
|
- type: mrr_at_10 |
|
value: 55.143 |
|
- type: mrr_at_100 |
|
value: 55.509 |
|
- type: mrr_at_1000 |
|
value: 55.509 |
|
- type: mrr_at_3 |
|
value: 50.212999999999994 |
|
- type: mrr_at_5 |
|
value: 53.432 |
|
- type: ndcg_at_1 |
|
value: 36.486000000000004 |
|
- type: ndcg_at_10 |
|
value: 64.273 |
|
- type: ndcg_at_100 |
|
value: 65.66199999999999 |
|
- type: ndcg_at_1000 |
|
value: 65.66199999999999 |
|
- type: ndcg_at_3 |
|
value: 54.352999999999994 |
|
- type: ndcg_at_5 |
|
value: 60.131 |
|
- type: precision_at_1 |
|
value: 36.486000000000004 |
|
- type: precision_at_10 |
|
value: 9.395000000000001 |
|
- type: precision_at_100 |
|
value: 0.996 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_3 |
|
value: 22.428 |
|
- type: precision_at_5 |
|
value: 16.259 |
|
- type: recall_at_1 |
|
value: 36.486000000000004 |
|
- type: recall_at_10 |
|
value: 93.95400000000001 |
|
- type: recall_at_100 |
|
value: 99.644 |
|
- type: recall_at_1000 |
|
value: 99.644 |
|
- type: recall_at_3 |
|
value: 67.283 |
|
- type: recall_at_5 |
|
value: 81.294 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d |
|
metrics: |
|
- type: v_measure |
|
value: 56.461169803700564 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 |
|
metrics: |
|
- type: v_measure |
|
value: 51.73600434466286 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 |
|
metrics: |
|
- type: map |
|
value: 67.57827065898053 |
|
- type: mrr |
|
value: 79.08136569493911 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 83.53324575999243 |
|
- type: cos_sim_spearman |
|
value: 81.37173362822374 |
|
- type: euclidean_pearson |
|
value: 82.19243335103444 |
|
- type: euclidean_spearman |
|
value: 81.33679307304334 |
|
- type: manhattan_pearson |
|
value: 82.38752665975699 |
|
- type: manhattan_spearman |
|
value: 81.31510583189689 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
metrics: |
|
- type: accuracy |
|
value: 87.56818181818181 |
|
- type: f1 |
|
value: 87.25826722019875 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 |
|
metrics: |
|
- type: v_measure |
|
value: 50.09239610327673 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 |
|
metrics: |
|
- type: v_measure |
|
value: 46.64733054606282 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackAndroidRetrieval |
|
config: default |
|
split: test |
|
revision: f46a197baaae43b4f621051089b82a364682dfeb |
|
metrics: |
|
- type: map_at_1 |
|
value: 33.997 |
|
- type: map_at_10 |
|
value: 48.176 |
|
- type: map_at_100 |
|
value: 49.82 |
|
- type: map_at_1000 |
|
value: 49.924 |
|
- type: map_at_3 |
|
value: 43.626 |
|
- type: map_at_5 |
|
value: 46.275 |
|
- type: mrr_at_1 |
|
value: 42.059999999999995 |
|
- type: mrr_at_10 |
|
value: 53.726 |
|
- type: mrr_at_100 |
|
value: 54.398 |
|
- type: mrr_at_1000 |
|
value: 54.416 |
|
- type: mrr_at_3 |
|
value: 50.714999999999996 |
|
- type: mrr_at_5 |
|
value: 52.639 |
|
- type: ndcg_at_1 |
|
value: 42.059999999999995 |
|
- type: ndcg_at_10 |
|
value: 55.574999999999996 |
|
- type: ndcg_at_100 |
|
value: 60.744 |
|
- type: ndcg_at_1000 |
|
value: 61.85699999999999 |
|
- type: ndcg_at_3 |
|
value: 49.363 |
|
- type: ndcg_at_5 |
|
value: 52.44 |
|
- type: precision_at_1 |
|
value: 42.059999999999995 |
|
- type: precision_at_10 |
|
value: 11.101999999999999 |
|
- type: precision_at_100 |
|
value: 1.73 |
|
- type: precision_at_1000 |
|
value: 0.218 |
|
- type: precision_at_3 |
|
value: 24.464 |
|
- type: precision_at_5 |
|
value: 18.026 |
|
- type: recall_at_1 |
|
value: 33.997 |
|
- type: recall_at_10 |
|
value: 70.35900000000001 |
|
- type: recall_at_100 |
|
value: 91.642 |
|
- type: recall_at_1000 |
|
value: 97.977 |
|
- type: recall_at_3 |
|
value: 52.76 |
|
- type: recall_at_5 |
|
value: 61.148 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackEnglishRetrieval |
|
config: default |
|
split: test |
|
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 |
|
metrics: |
|
- type: map_at_1 |
|
value: 35.884 |
|
- type: map_at_10 |
|
value: 48.14 |
|
- type: map_at_100 |
|
value: 49.5 |
|
- type: map_at_1000 |
|
value: 49.63 |
|
- type: map_at_3 |
|
value: 44.646 |
|
- type: map_at_5 |
|
value: 46.617999999999995 |
|
- type: mrr_at_1 |
|
value: 44.458999999999996 |
|
- type: mrr_at_10 |
|
value: 53.751000000000005 |
|
- type: mrr_at_100 |
|
value: 54.37800000000001 |
|
- type: mrr_at_1000 |
|
value: 54.415 |
|
- type: mrr_at_3 |
|
value: 51.815 |
|
- type: mrr_at_5 |
|
value: 52.882 |
|
- type: ndcg_at_1 |
|
value: 44.458999999999996 |
|
- type: ndcg_at_10 |
|
value: 54.157 |
|
- type: ndcg_at_100 |
|
value: 58.362 |
|
- type: ndcg_at_1000 |
|
value: 60.178 |
|
- type: ndcg_at_3 |
|
value: 49.661 |
|
- type: ndcg_at_5 |
|
value: 51.74999999999999 |
|
- type: precision_at_1 |
|
value: 44.458999999999996 |
|
- type: precision_at_10 |
|
value: 10.248 |
|
- type: precision_at_100 |
|
value: 1.5890000000000002 |
|
- type: precision_at_1000 |
|
value: 0.207 |
|
- type: precision_at_3 |
|
value: 23.928 |
|
- type: precision_at_5 |
|
value: 16.878999999999998 |
|
- type: recall_at_1 |
|
value: 35.884 |
|
- type: recall_at_10 |
|
value: 64.798 |
|
- type: recall_at_100 |
|
value: 82.345 |
|
- type: recall_at_1000 |
|
value: 93.267 |
|
- type: recall_at_3 |
|
value: 51.847 |
|
- type: recall_at_5 |
|
value: 57.601 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGamingRetrieval |
|
config: default |
|
split: test |
|
revision: 4885aa143210c98657558c04aaf3dc47cfb54340 |
|
metrics: |
|
- type: map_at_1 |
|
value: 39.383 |
|
- type: map_at_10 |
|
value: 53.714 |
|
- type: map_at_100 |
|
value: 54.838 |
|
- type: map_at_1000 |
|
value: 54.87800000000001 |
|
- type: map_at_3 |
|
value: 50.114999999999995 |
|
- type: map_at_5 |
|
value: 52.153000000000006 |
|
- type: mrr_at_1 |
|
value: 45.016 |
|
- type: mrr_at_10 |
|
value: 56.732000000000006 |
|
- type: mrr_at_100 |
|
value: 57.411 |
|
- type: mrr_at_1000 |
|
value: 57.431 |
|
- type: mrr_at_3 |
|
value: 54.044000000000004 |
|
- type: mrr_at_5 |
|
value: 55.639 |
|
- type: ndcg_at_1 |
|
value: 45.016 |
|
- type: ndcg_at_10 |
|
value: 60.228 |
|
- type: ndcg_at_100 |
|
value: 64.277 |
|
- type: ndcg_at_1000 |
|
value: 65.07 |
|
- type: ndcg_at_3 |
|
value: 54.124 |
|
- type: ndcg_at_5 |
|
value: 57.147000000000006 |
|
- type: precision_at_1 |
|
value: 45.016 |
|
- type: precision_at_10 |
|
value: 9.937 |
|
- type: precision_at_100 |
|
value: 1.288 |
|
- type: precision_at_1000 |
|
value: 0.13899999999999998 |
|
- type: precision_at_3 |
|
value: 24.471999999999998 |
|
- type: precision_at_5 |
|
value: 16.991 |
|
- type: recall_at_1 |
|
value: 39.383 |
|
- type: recall_at_10 |
|
value: 76.175 |
|
- type: recall_at_100 |
|
value: 93.02 |
|
- type: recall_at_1000 |
|
value: 98.60900000000001 |
|
- type: recall_at_3 |
|
value: 60.265 |
|
- type: recall_at_5 |
|
value: 67.46600000000001 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGisRetrieval |
|
config: default |
|
split: test |
|
revision: 5003b3064772da1887988e05400cf3806fe491f2 |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.426000000000002 |
|
- type: map_at_10 |
|
value: 37.397000000000006 |
|
- type: map_at_100 |
|
value: 38.61 |
|
- type: map_at_1000 |
|
value: 38.678000000000004 |
|
- type: map_at_3 |
|
value: 34.150999999999996 |
|
- type: map_at_5 |
|
value: 36.137 |
|
- type: mrr_at_1 |
|
value: 29.944 |
|
- type: mrr_at_10 |
|
value: 39.654 |
|
- type: mrr_at_100 |
|
value: 40.638000000000005 |
|
- type: mrr_at_1000 |
|
value: 40.691 |
|
- type: mrr_at_3 |
|
value: 36.817 |
|
- type: mrr_at_5 |
|
value: 38.524 |
|
- type: ndcg_at_1 |
|
value: 29.944 |
|
- type: ndcg_at_10 |
|
value: 43.094 |
|
- type: ndcg_at_100 |
|
value: 48.789 |
|
- type: ndcg_at_1000 |
|
value: 50.339999999999996 |
|
- type: ndcg_at_3 |
|
value: 36.984 |
|
- type: ndcg_at_5 |
|
value: 40.248 |
|
- type: precision_at_1 |
|
value: 29.944 |
|
- type: precision_at_10 |
|
value: 6.78 |
|
- type: precision_at_100 |
|
value: 1.024 |
|
- type: precision_at_1000 |
|
value: 0.11800000000000001 |
|
- type: precision_at_3 |
|
value: 15.895000000000001 |
|
- type: precision_at_5 |
|
value: 11.39 |
|
- type: recall_at_1 |
|
value: 27.426000000000002 |
|
- type: recall_at_10 |
|
value: 58.464000000000006 |
|
- type: recall_at_100 |
|
value: 84.193 |
|
- type: recall_at_1000 |
|
value: 95.52000000000001 |
|
- type: recall_at_3 |
|
value: 42.172 |
|
- type: recall_at_5 |
|
value: 50.101 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackMathematicaRetrieval |
|
config: default |
|
split: test |
|
revision: 90fceea13679c63fe563ded68f3b6f06e50061de |
|
metrics: |
|
- type: map_at_1 |
|
value: 19.721 |
|
- type: map_at_10 |
|
value: 31.604 |
|
- type: map_at_100 |
|
value: 32.972 |
|
- type: map_at_1000 |
|
value: 33.077 |
|
- type: map_at_3 |
|
value: 27.218999999999998 |
|
- type: map_at_5 |
|
value: 29.53 |
|
- type: mrr_at_1 |
|
value: 25.0 |
|
- type: mrr_at_10 |
|
value: 35.843 |
|
- type: mrr_at_100 |
|
value: 36.785000000000004 |
|
- type: mrr_at_1000 |
|
value: 36.842000000000006 |
|
- type: mrr_at_3 |
|
value: 32.193 |
|
- type: mrr_at_5 |
|
value: 34.264 |
|
- type: ndcg_at_1 |
|
value: 25.0 |
|
- type: ndcg_at_10 |
|
value: 38.606 |
|
- type: ndcg_at_100 |
|
value: 44.272 |
|
- type: ndcg_at_1000 |
|
value: 46.527 |
|
- type: ndcg_at_3 |
|
value: 30.985000000000003 |
|
- type: ndcg_at_5 |
|
value: 34.43 |
|
- type: precision_at_1 |
|
value: 25.0 |
|
- type: precision_at_10 |
|
value: 7.811 |
|
- type: precision_at_100 |
|
value: 1.203 |
|
- type: precision_at_1000 |
|
value: 0.15 |
|
- type: precision_at_3 |
|
value: 15.423 |
|
- type: precision_at_5 |
|
value: 11.791 |
|
- type: recall_at_1 |
|
value: 19.721 |
|
- type: recall_at_10 |
|
value: 55.625 |
|
- type: recall_at_100 |
|
value: 79.34400000000001 |
|
- type: recall_at_1000 |
|
value: 95.208 |
|
- type: recall_at_3 |
|
value: 35.19 |
|
- type: recall_at_5 |
|
value: 43.626 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackPhysicsRetrieval |
|
config: default |
|
split: test |
|
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 |
|
metrics: |
|
- type: map_at_1 |
|
value: 33.784 |
|
- type: map_at_10 |
|
value: 47.522 |
|
- type: map_at_100 |
|
value: 48.949999999999996 |
|
- type: map_at_1000 |
|
value: 49.038 |
|
- type: map_at_3 |
|
value: 43.284 |
|
- type: map_at_5 |
|
value: 45.629 |
|
- type: mrr_at_1 |
|
value: 41.482 |
|
- type: mrr_at_10 |
|
value: 52.830999999999996 |
|
- type: mrr_at_100 |
|
value: 53.559999999999995 |
|
- type: mrr_at_1000 |
|
value: 53.588 |
|
- type: mrr_at_3 |
|
value: 50.016000000000005 |
|
- type: mrr_at_5 |
|
value: 51.614000000000004 |
|
- type: ndcg_at_1 |
|
value: 41.482 |
|
- type: ndcg_at_10 |
|
value: 54.569 |
|
- type: ndcg_at_100 |
|
value: 59.675999999999995 |
|
- type: ndcg_at_1000 |
|
value: 60.989000000000004 |
|
- type: ndcg_at_3 |
|
value: 48.187000000000005 |
|
- type: ndcg_at_5 |
|
value: 51.183 |
|
- type: precision_at_1 |
|
value: 41.482 |
|
- type: precision_at_10 |
|
value: 10.221 |
|
- type: precision_at_100 |
|
value: 1.486 |
|
- type: precision_at_1000 |
|
value: 0.17500000000000002 |
|
- type: precision_at_3 |
|
value: 23.548 |
|
- type: precision_at_5 |
|
value: 16.805 |
|
- type: recall_at_1 |
|
value: 33.784 |
|
- type: recall_at_10 |
|
value: 69.798 |
|
- type: recall_at_100 |
|
value: 90.098 |
|
- type: recall_at_1000 |
|
value: 98.176 |
|
- type: recall_at_3 |
|
value: 52.127 |
|
- type: recall_at_5 |
|
value: 59.861 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackProgrammersRetrieval |
|
config: default |
|
split: test |
|
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 |
|
metrics: |
|
- type: map_at_1 |
|
value: 28.038999999999998 |
|
- type: map_at_10 |
|
value: 41.904 |
|
- type: map_at_100 |
|
value: 43.36 |
|
- type: map_at_1000 |
|
value: 43.453 |
|
- type: map_at_3 |
|
value: 37.785999999999994 |
|
- type: map_at_5 |
|
value: 40.105000000000004 |
|
- type: mrr_at_1 |
|
value: 35.046 |
|
- type: mrr_at_10 |
|
value: 46.926 |
|
- type: mrr_at_100 |
|
value: 47.815000000000005 |
|
- type: mrr_at_1000 |
|
value: 47.849000000000004 |
|
- type: mrr_at_3 |
|
value: 44.273 |
|
- type: mrr_at_5 |
|
value: 45.774 |
|
- type: ndcg_at_1 |
|
value: 35.046 |
|
- type: ndcg_at_10 |
|
value: 48.937000000000005 |
|
- type: ndcg_at_100 |
|
value: 54.544000000000004 |
|
- type: ndcg_at_1000 |
|
value: 56.069 |
|
- type: ndcg_at_3 |
|
value: 42.858000000000004 |
|
- type: ndcg_at_5 |
|
value: 45.644 |
|
- type: precision_at_1 |
|
value: 35.046 |
|
- type: precision_at_10 |
|
value: 9.452 |
|
- type: precision_at_100 |
|
value: 1.429 |
|
- type: precision_at_1000 |
|
value: 0.173 |
|
- type: precision_at_3 |
|
value: 21.346999999999998 |
|
- type: precision_at_5 |
|
value: 15.342 |
|
- type: recall_at_1 |
|
value: 28.038999999999998 |
|
- type: recall_at_10 |
|
value: 64.59700000000001 |
|
- type: recall_at_100 |
|
value: 87.735 |
|
- type: recall_at_1000 |
|
value: 97.41300000000001 |
|
- type: recall_at_3 |
|
value: 47.368 |
|
- type: recall_at_5 |
|
value: 54.93900000000001 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
config: default |
|
split: test |
|
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 |
|
metrics: |
|
- type: map_at_1 |
|
value: 28.17291666666667 |
|
- type: map_at_10 |
|
value: 40.025749999999995 |
|
- type: map_at_100 |
|
value: 41.39208333333333 |
|
- type: map_at_1000 |
|
value: 41.499249999999996 |
|
- type: map_at_3 |
|
value: 36.347 |
|
- type: map_at_5 |
|
value: 38.41391666666667 |
|
- type: mrr_at_1 |
|
value: 33.65925 |
|
- type: mrr_at_10 |
|
value: 44.085499999999996 |
|
- type: mrr_at_100 |
|
value: 44.94116666666667 |
|
- type: mrr_at_1000 |
|
value: 44.9855 |
|
- type: mrr_at_3 |
|
value: 41.2815 |
|
- type: mrr_at_5 |
|
value: 42.91491666666666 |
|
- type: ndcg_at_1 |
|
value: 33.65925 |
|
- type: ndcg_at_10 |
|
value: 46.430833333333325 |
|
- type: ndcg_at_100 |
|
value: 51.761 |
|
- type: ndcg_at_1000 |
|
value: 53.50899999999999 |
|
- type: ndcg_at_3 |
|
value: 40.45133333333333 |
|
- type: ndcg_at_5 |
|
value: 43.31483333333334 |
|
- type: precision_at_1 |
|
value: 33.65925 |
|
- type: precision_at_10 |
|
value: 8.4995 |
|
- type: precision_at_100 |
|
value: 1.3210000000000004 |
|
- type: precision_at_1000 |
|
value: 0.16591666666666666 |
|
- type: precision_at_3 |
|
value: 19.165083333333335 |
|
- type: precision_at_5 |
|
value: 13.81816666666667 |
|
- type: recall_at_1 |
|
value: 28.17291666666667 |
|
- type: recall_at_10 |
|
value: 61.12624999999999 |
|
- type: recall_at_100 |
|
value: 83.97266666666667 |
|
- type: recall_at_1000 |
|
value: 95.66550000000001 |
|
- type: recall_at_3 |
|
value: 44.661249999999995 |
|
- type: recall_at_5 |
|
value: 51.983333333333334 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackStatsRetrieval |
|
config: default |
|
split: test |
|
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.681 |
|
- type: map_at_10 |
|
value: 34.892 |
|
- type: map_at_100 |
|
value: 35.996 |
|
- type: map_at_1000 |
|
value: 36.083 |
|
- type: map_at_3 |
|
value: 31.491999999999997 |
|
- type: map_at_5 |
|
value: 33.632 |
|
- type: mrr_at_1 |
|
value: 28.528 |
|
- type: mrr_at_10 |
|
value: 37.694 |
|
- type: mrr_at_100 |
|
value: 38.613 |
|
- type: mrr_at_1000 |
|
value: 38.668 |
|
- type: mrr_at_3 |
|
value: 34.714 |
|
- type: mrr_at_5 |
|
value: 36.616 |
|
- type: ndcg_at_1 |
|
value: 28.528 |
|
- type: ndcg_at_10 |
|
value: 40.703 |
|
- type: ndcg_at_100 |
|
value: 45.993 |
|
- type: ndcg_at_1000 |
|
value: 47.847 |
|
- type: ndcg_at_3 |
|
value: 34.622 |
|
- type: ndcg_at_5 |
|
value: 38.035999999999994 |
|
- type: precision_at_1 |
|
value: 28.528 |
|
- type: precision_at_10 |
|
value: 6.902 |
|
- type: precision_at_100 |
|
value: 1.0370000000000001 |
|
- type: precision_at_1000 |
|
value: 0.126 |
|
- type: precision_at_3 |
|
value: 15.798000000000002 |
|
- type: precision_at_5 |
|
value: 11.655999999999999 |
|
- type: recall_at_1 |
|
value: 24.681 |
|
- type: recall_at_10 |
|
value: 55.81 |
|
- type: recall_at_100 |
|
value: 79.785 |
|
- type: recall_at_1000 |
|
value: 92.959 |
|
- type: recall_at_3 |
|
value: 39.074 |
|
- type: recall_at_5 |
|
value: 47.568 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackTexRetrieval |
|
config: default |
|
split: test |
|
revision: 46989137a86843e03a6195de44b09deda022eec7 |
|
metrics: |
|
- type: map_at_1 |
|
value: 18.627 |
|
- type: map_at_10 |
|
value: 27.872000000000003 |
|
- type: map_at_100 |
|
value: 29.237999999999996 |
|
- type: map_at_1000 |
|
value: 29.363 |
|
- type: map_at_3 |
|
value: 24.751 |
|
- type: map_at_5 |
|
value: 26.521 |
|
- type: mrr_at_1 |
|
value: 23.021 |
|
- type: mrr_at_10 |
|
value: 31.924000000000003 |
|
- type: mrr_at_100 |
|
value: 32.922000000000004 |
|
- type: mrr_at_1000 |
|
value: 32.988 |
|
- type: mrr_at_3 |
|
value: 29.192 |
|
- type: mrr_at_5 |
|
value: 30.798 |
|
- type: ndcg_at_1 |
|
value: 23.021 |
|
- type: ndcg_at_10 |
|
value: 33.535 |
|
- type: ndcg_at_100 |
|
value: 39.732 |
|
- type: ndcg_at_1000 |
|
value: 42.201 |
|
- type: ndcg_at_3 |
|
value: 28.153 |
|
- type: ndcg_at_5 |
|
value: 30.746000000000002 |
|
- type: precision_at_1 |
|
value: 23.021 |
|
- type: precision_at_10 |
|
value: 6.459 |
|
- type: precision_at_100 |
|
value: 1.1320000000000001 |
|
- type: precision_at_1000 |
|
value: 0.153 |
|
- type: precision_at_3 |
|
value: 13.719000000000001 |
|
- type: precision_at_5 |
|
value: 10.193000000000001 |
|
- type: recall_at_1 |
|
value: 18.627 |
|
- type: recall_at_10 |
|
value: 46.463 |
|
- type: recall_at_100 |
|
value: 74.226 |
|
- type: recall_at_1000 |
|
value: 91.28500000000001 |
|
- type: recall_at_3 |
|
value: 31.357000000000003 |
|
- type: recall_at_5 |
|
value: 38.067 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackUnixRetrieval |
|
config: default |
|
split: test |
|
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 |
|
metrics: |
|
- type: map_at_1 |
|
value: 31.457 |
|
- type: map_at_10 |
|
value: 42.888 |
|
- type: map_at_100 |
|
value: 44.24 |
|
- type: map_at_1000 |
|
value: 44.327 |
|
- type: map_at_3 |
|
value: 39.588 |
|
- type: map_at_5 |
|
value: 41.423 |
|
- type: mrr_at_1 |
|
value: 37.126999999999995 |
|
- type: mrr_at_10 |
|
value: 47.083000000000006 |
|
- type: mrr_at_100 |
|
value: 47.997 |
|
- type: mrr_at_1000 |
|
value: 48.044 |
|
- type: mrr_at_3 |
|
value: 44.574000000000005 |
|
- type: mrr_at_5 |
|
value: 46.202 |
|
- type: ndcg_at_1 |
|
value: 37.126999999999995 |
|
- type: ndcg_at_10 |
|
value: 48.833 |
|
- type: ndcg_at_100 |
|
value: 54.327000000000005 |
|
- type: ndcg_at_1000 |
|
value: 56.011 |
|
- type: ndcg_at_3 |
|
value: 43.541999999999994 |
|
- type: ndcg_at_5 |
|
value: 46.127 |
|
- type: precision_at_1 |
|
value: 37.126999999999995 |
|
- type: precision_at_10 |
|
value: 8.376999999999999 |
|
- type: precision_at_100 |
|
value: 1.2309999999999999 |
|
- type: precision_at_1000 |
|
value: 0.146 |
|
- type: precision_at_3 |
|
value: 20.211000000000002 |
|
- type: precision_at_5 |
|
value: 14.16 |
|
- type: recall_at_1 |
|
value: 31.457 |
|
- type: recall_at_10 |
|
value: 62.369 |
|
- type: recall_at_100 |
|
value: 85.444 |
|
- type: recall_at_1000 |
|
value: 96.65599999999999 |
|
- type: recall_at_3 |
|
value: 47.961 |
|
- type: recall_at_5 |
|
value: 54.676 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWebmastersRetrieval |
|
config: default |
|
split: test |
|
revision: 160c094312a0e1facb97e55eeddb698c0abe3571 |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.139999999999997 |
|
- type: map_at_10 |
|
value: 38.801 |
|
- type: map_at_100 |
|
value: 40.549 |
|
- type: map_at_1000 |
|
value: 40.802 |
|
- type: map_at_3 |
|
value: 35.05 |
|
- type: map_at_5 |
|
value: 36.884 |
|
- type: mrr_at_1 |
|
value: 33.004 |
|
- type: mrr_at_10 |
|
value: 43.864 |
|
- type: mrr_at_100 |
|
value: 44.667 |
|
- type: mrr_at_1000 |
|
value: 44.717 |
|
- type: mrr_at_3 |
|
value: 40.777 |
|
- type: mrr_at_5 |
|
value: 42.319 |
|
- type: ndcg_at_1 |
|
value: 33.004 |
|
- type: ndcg_at_10 |
|
value: 46.022 |
|
- type: ndcg_at_100 |
|
value: 51.542 |
|
- type: ndcg_at_1000 |
|
value: 53.742000000000004 |
|
- type: ndcg_at_3 |
|
value: 39.795 |
|
- type: ndcg_at_5 |
|
value: 42.272 |
|
- type: precision_at_1 |
|
value: 33.004 |
|
- type: precision_at_10 |
|
value: 9.012 |
|
- type: precision_at_100 |
|
value: 1.7770000000000001 |
|
- type: precision_at_1000 |
|
value: 0.26 |
|
- type: precision_at_3 |
|
value: 19.038 |
|
- type: precision_at_5 |
|
value: 13.675999999999998 |
|
- type: recall_at_1 |
|
value: 27.139999999999997 |
|
- type: recall_at_10 |
|
value: 60.961 |
|
- type: recall_at_100 |
|
value: 84.451 |
|
- type: recall_at_1000 |
|
value: 98.113 |
|
- type: recall_at_3 |
|
value: 43.001 |
|
- type: recall_at_5 |
|
value: 49.896 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWordpressRetrieval |
|
config: default |
|
split: test |
|
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 |
|
metrics: |
|
- type: map_at_1 |
|
value: 17.936 |
|
- type: map_at_10 |
|
value: 27.399 |
|
- type: map_at_100 |
|
value: 28.632 |
|
- type: map_at_1000 |
|
value: 28.738000000000003 |
|
- type: map_at_3 |
|
value: 24.456 |
|
- type: map_at_5 |
|
value: 26.06 |
|
- type: mrr_at_1 |
|
value: 19.224 |
|
- type: mrr_at_10 |
|
value: 28.998 |
|
- type: mrr_at_100 |
|
value: 30.11 |
|
- type: mrr_at_1000 |
|
value: 30.177 |
|
- type: mrr_at_3 |
|
value: 26.247999999999998 |
|
- type: mrr_at_5 |
|
value: 27.708 |
|
- type: ndcg_at_1 |
|
value: 19.224 |
|
- type: ndcg_at_10 |
|
value: 32.911 |
|
- type: ndcg_at_100 |
|
value: 38.873999999999995 |
|
- type: ndcg_at_1000 |
|
value: 41.277 |
|
- type: ndcg_at_3 |
|
value: 27.142 |
|
- type: ndcg_at_5 |
|
value: 29.755 |
|
- type: precision_at_1 |
|
value: 19.224 |
|
- type: precision_at_10 |
|
value: 5.6930000000000005 |
|
- type: precision_at_100 |
|
value: 0.9259999999999999 |
|
- type: precision_at_1000 |
|
value: 0.126 |
|
- type: precision_at_3 |
|
value: 12.138 |
|
- type: precision_at_5 |
|
value: 8.909 |
|
- type: recall_at_1 |
|
value: 17.936 |
|
- type: recall_at_10 |
|
value: 48.096 |
|
- type: recall_at_100 |
|
value: 75.389 |
|
- type: recall_at_1000 |
|
value: 92.803 |
|
- type: recall_at_3 |
|
value: 32.812999999999995 |
|
- type: recall_at_5 |
|
value: 38.851 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/climate-fever |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 |
|
metrics: |
|
- type: map_at_1 |
|
value: 22.076999999999998 |
|
- type: map_at_10 |
|
value: 35.44 |
|
- type: map_at_100 |
|
value: 37.651 |
|
- type: map_at_1000 |
|
value: 37.824999999999996 |
|
- type: map_at_3 |
|
value: 30.764999999999997 |
|
- type: map_at_5 |
|
value: 33.26 |
|
- type: mrr_at_1 |
|
value: 50.163000000000004 |
|
- type: mrr_at_10 |
|
value: 61.207 |
|
- type: mrr_at_100 |
|
value: 61.675000000000004 |
|
- type: mrr_at_1000 |
|
value: 61.692 |
|
- type: mrr_at_3 |
|
value: 58.60999999999999 |
|
- type: mrr_at_5 |
|
value: 60.307 |
|
- type: ndcg_at_1 |
|
value: 50.163000000000004 |
|
- type: ndcg_at_10 |
|
value: 45.882 |
|
- type: ndcg_at_100 |
|
value: 53.239999999999995 |
|
- type: ndcg_at_1000 |
|
value: 55.852000000000004 |
|
- type: ndcg_at_3 |
|
value: 40.514 |
|
- type: ndcg_at_5 |
|
value: 42.038 |
|
- type: precision_at_1 |
|
value: 50.163000000000004 |
|
- type: precision_at_10 |
|
value: 13.466000000000001 |
|
- type: precision_at_100 |
|
value: 2.164 |
|
- type: precision_at_1000 |
|
value: 0.266 |
|
- type: precision_at_3 |
|
value: 29.707 |
|
- type: precision_at_5 |
|
value: 21.694 |
|
- type: recall_at_1 |
|
value: 22.076999999999998 |
|
- type: recall_at_10 |
|
value: 50.193 |
|
- type: recall_at_100 |
|
value: 74.993 |
|
- type: recall_at_1000 |
|
value: 89.131 |
|
- type: recall_at_3 |
|
value: 35.472 |
|
- type: recall_at_5 |
|
value: 41.814 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/dbpedia |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 |
|
metrics: |
|
- type: map_at_1 |
|
value: 9.953 |
|
- type: map_at_10 |
|
value: 24.515 |
|
- type: map_at_100 |
|
value: 36.173 |
|
- type: map_at_1000 |
|
value: 38.351 |
|
- type: map_at_3 |
|
value: 16.592000000000002 |
|
- type: map_at_5 |
|
value: 20.036 |
|
- type: mrr_at_1 |
|
value: 74.25 |
|
- type: mrr_at_10 |
|
value: 81.813 |
|
- type: mrr_at_100 |
|
value: 82.006 |
|
- type: mrr_at_1000 |
|
value: 82.011 |
|
- type: mrr_at_3 |
|
value: 80.875 |
|
- type: mrr_at_5 |
|
value: 81.362 |
|
- type: ndcg_at_1 |
|
value: 62.5 |
|
- type: ndcg_at_10 |
|
value: 52.42 |
|
- type: ndcg_at_100 |
|
value: 56.808 |
|
- type: ndcg_at_1000 |
|
value: 63.532999999999994 |
|
- type: ndcg_at_3 |
|
value: 56.654 |
|
- type: ndcg_at_5 |
|
value: 54.18300000000001 |
|
- type: precision_at_1 |
|
value: 74.25 |
|
- type: precision_at_10 |
|
value: 42.699999999999996 |
|
- type: precision_at_100 |
|
value: 13.675 |
|
- type: precision_at_1000 |
|
value: 2.664 |
|
- type: precision_at_3 |
|
value: 60.5 |
|
- type: precision_at_5 |
|
value: 52.800000000000004 |
|
- type: recall_at_1 |
|
value: 9.953 |
|
- type: recall_at_10 |
|
value: 30.253999999999998 |
|
- type: recall_at_100 |
|
value: 62.516000000000005 |
|
- type: recall_at_1000 |
|
value: 84.163 |
|
- type: recall_at_3 |
|
value: 18.13 |
|
- type: recall_at_5 |
|
value: 22.771 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 |
|
metrics: |
|
- type: accuracy |
|
value: 79.455 |
|
- type: f1 |
|
value: 74.16798697647569 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/fever |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 |
|
metrics: |
|
- type: map_at_1 |
|
value: 87.531 |
|
- type: map_at_10 |
|
value: 93.16799999999999 |
|
- type: map_at_100 |
|
value: 93.341 |
|
- type: map_at_1000 |
|
value: 93.349 |
|
- type: map_at_3 |
|
value: 92.444 |
|
- type: map_at_5 |
|
value: 92.865 |
|
- type: mrr_at_1 |
|
value: 94.014 |
|
- type: mrr_at_10 |
|
value: 96.761 |
|
- type: mrr_at_100 |
|
value: 96.762 |
|
- type: mrr_at_1000 |
|
value: 96.762 |
|
- type: mrr_at_3 |
|
value: 96.672 |
|
- type: mrr_at_5 |
|
value: 96.736 |
|
- type: ndcg_at_1 |
|
value: 94.014 |
|
- type: ndcg_at_10 |
|
value: 95.112 |
|
- type: ndcg_at_100 |
|
value: 95.578 |
|
- type: ndcg_at_1000 |
|
value: 95.68900000000001 |
|
- type: ndcg_at_3 |
|
value: 94.392 |
|
- type: ndcg_at_5 |
|
value: 94.72500000000001 |
|
- type: precision_at_1 |
|
value: 94.014 |
|
- type: precision_at_10 |
|
value: 11.065 |
|
- type: precision_at_100 |
|
value: 1.157 |
|
- type: precision_at_1000 |
|
value: 0.11800000000000001 |
|
- type: precision_at_3 |
|
value: 35.259 |
|
- type: precision_at_5 |
|
value: 21.599 |
|
- type: recall_at_1 |
|
value: 87.531 |
|
- type: recall_at_10 |
|
value: 97.356 |
|
- type: recall_at_100 |
|
value: 98.965 |
|
- type: recall_at_1000 |
|
value: 99.607 |
|
- type: recall_at_3 |
|
value: 95.312 |
|
- type: recall_at_5 |
|
value: 96.295 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/fiqa |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
revision: 27a168819829fe9bcd655c2df245fb19452e8e06 |
|
metrics: |
|
- type: map_at_1 |
|
value: 32.055 |
|
- type: map_at_10 |
|
value: 53.114 |
|
- type: map_at_100 |
|
value: 55.235 |
|
- type: map_at_1000 |
|
value: 55.345 |
|
- type: map_at_3 |
|
value: 45.854 |
|
- type: map_at_5 |
|
value: 50.025 |
|
- type: mrr_at_1 |
|
value: 60.34 |
|
- type: mrr_at_10 |
|
value: 68.804 |
|
- type: mrr_at_100 |
|
value: 69.309 |
|
- type: mrr_at_1000 |
|
value: 69.32199999999999 |
|
- type: mrr_at_3 |
|
value: 66.40899999999999 |
|
- type: mrr_at_5 |
|
value: 67.976 |
|
- type: ndcg_at_1 |
|
value: 60.34 |
|
- type: ndcg_at_10 |
|
value: 62.031000000000006 |
|
- type: ndcg_at_100 |
|
value: 68.00500000000001 |
|
- type: ndcg_at_1000 |
|
value: 69.286 |
|
- type: ndcg_at_3 |
|
value: 56.355999999999995 |
|
- type: ndcg_at_5 |
|
value: 58.687 |
|
- type: precision_at_1 |
|
value: 60.34 |
|
- type: precision_at_10 |
|
value: 17.176 |
|
- type: precision_at_100 |
|
value: 2.36 |
|
- type: precision_at_1000 |
|
value: 0.259 |
|
- type: precision_at_3 |
|
value: 37.14 |
|
- type: precision_at_5 |
|
value: 27.809 |
|
- type: recall_at_1 |
|
value: 32.055 |
|
- type: recall_at_10 |
|
value: 70.91 |
|
- type: recall_at_100 |
|
value: 91.83 |
|
- type: recall_at_1000 |
|
value: 98.871 |
|
- type: recall_at_3 |
|
value: 51.202999999999996 |
|
- type: recall_at_5 |
|
value: 60.563 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/hotpotqa |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
revision: ab518f4d6fcca38d87c25209f94beba119d02014 |
|
metrics: |
|
- type: map_at_1 |
|
value: 43.68 |
|
- type: map_at_10 |
|
value: 64.389 |
|
- type: map_at_100 |
|
value: 65.24 |
|
- type: map_at_1000 |
|
value: 65.303 |
|
- type: map_at_3 |
|
value: 61.309000000000005 |
|
- type: map_at_5 |
|
value: 63.275999999999996 |
|
- type: mrr_at_1 |
|
value: 87.36 |
|
- type: mrr_at_10 |
|
value: 91.12 |
|
- type: mrr_at_100 |
|
value: 91.227 |
|
- type: mrr_at_1000 |
|
value: 91.229 |
|
- type: mrr_at_3 |
|
value: 90.57600000000001 |
|
- type: mrr_at_5 |
|
value: 90.912 |
|
- type: ndcg_at_1 |
|
value: 87.36 |
|
- type: ndcg_at_10 |
|
value: 73.076 |
|
- type: ndcg_at_100 |
|
value: 75.895 |
|
- type: ndcg_at_1000 |
|
value: 77.049 |
|
- type: ndcg_at_3 |
|
value: 68.929 |
|
- type: ndcg_at_5 |
|
value: 71.28 |
|
- type: precision_at_1 |
|
value: 87.36 |
|
- type: precision_at_10 |
|
value: 14.741000000000001 |
|
- type: precision_at_100 |
|
value: 1.694 |
|
- type: precision_at_1000 |
|
value: 0.185 |
|
- type: precision_at_3 |
|
value: 43.043 |
|
- type: precision_at_5 |
|
value: 27.681 |
|
- type: recall_at_1 |
|
value: 43.68 |
|
- type: recall_at_10 |
|
value: 73.707 |
|
- type: recall_at_100 |
|
value: 84.7 |
|
- type: recall_at_1000 |
|
value: 92.309 |
|
- type: recall_at_3 |
|
value: 64.564 |
|
- type: recall_at_5 |
|
value: 69.203 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 |
|
metrics: |
|
- type: accuracy |
|
value: 96.75399999999999 |
|
- type: ap |
|
value: 95.29389839242187 |
|
- type: f1 |
|
value: 96.75348377433475 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/msmarco |
|
name: MTEB MSMARCO |
|
config: default |
|
split: dev |
|
revision: c5a29a104738b98a9e76336939199e264163d4a0 |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.176 |
|
- type: map_at_10 |
|
value: 38.598 |
|
- type: map_at_100 |
|
value: 39.707 |
|
- type: map_at_1000 |
|
value: 39.744 |
|
- type: map_at_3 |
|
value: 34.566 |
|
- type: map_at_5 |
|
value: 36.863 |
|
- type: mrr_at_1 |
|
value: 25.874000000000002 |
|
- type: mrr_at_10 |
|
value: 39.214 |
|
- type: mrr_at_100 |
|
value: 40.251 |
|
- type: mrr_at_1000 |
|
value: 40.281 |
|
- type: mrr_at_3 |
|
value: 35.291 |
|
- type: mrr_at_5 |
|
value: 37.545 |
|
- type: ndcg_at_1 |
|
value: 25.874000000000002 |
|
- type: ndcg_at_10 |
|
value: 45.98 |
|
- type: ndcg_at_100 |
|
value: 51.197 |
|
- type: ndcg_at_1000 |
|
value: 52.073 |
|
- type: ndcg_at_3 |
|
value: 37.785999999999994 |
|
- type: ndcg_at_5 |
|
value: 41.870000000000005 |
|
- type: precision_at_1 |
|
value: 25.874000000000002 |
|
- type: precision_at_10 |
|
value: 7.181 |
|
- type: precision_at_100 |
|
value: 0.979 |
|
- type: precision_at_1000 |
|
value: 0.106 |
|
- type: precision_at_3 |
|
value: 16.051000000000002 |
|
- type: precision_at_5 |
|
value: 11.713 |
|
- type: recall_at_1 |
|
value: 25.176 |
|
- type: recall_at_10 |
|
value: 68.67699999999999 |
|
- type: recall_at_100 |
|
value: 92.55 |
|
- type: recall_at_1000 |
|
value: 99.164 |
|
- type: recall_at_3 |
|
value: 46.372 |
|
- type: recall_at_5 |
|
value: 56.16 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 99.03784769721841 |
|
- type: f1 |
|
value: 98.97791641821495 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 91.88326493388054 |
|
- type: f1 |
|
value: 73.74809928034335 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 85.41358439811701 |
|
- type: f1 |
|
value: 83.503679460639 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 89.77135171486215 |
|
- type: f1 |
|
value: 88.89843747468366 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 |
|
metrics: |
|
- type: v_measure |
|
value: 46.22695362087359 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 |
|
metrics: |
|
- type: v_measure |
|
value: 44.132372165849425 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
config: default |
|
split: test |
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 |
|
metrics: |
|
- type: map |
|
value: 33.35680810650402 |
|
- type: mrr |
|
value: 34.72625715637218 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/nfcorpus |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 |
|
metrics: |
|
- type: map_at_1 |
|
value: 7.165000000000001 |
|
- type: map_at_10 |
|
value: 15.424 |
|
- type: map_at_100 |
|
value: 20.28 |
|
- type: map_at_1000 |
|
value: 22.065 |
|
- type: map_at_3 |
|
value: 11.236 |
|
- type: map_at_5 |
|
value: 13.025999999999998 |
|
- type: mrr_at_1 |
|
value: 51.702999999999996 |
|
- type: mrr_at_10 |
|
value: 59.965 |
|
- type: mrr_at_100 |
|
value: 60.667 |
|
- type: mrr_at_1000 |
|
value: 60.702999999999996 |
|
- type: mrr_at_3 |
|
value: 58.772000000000006 |
|
- type: mrr_at_5 |
|
value: 59.267 |
|
- type: ndcg_at_1 |
|
value: 49.536 |
|
- type: ndcg_at_10 |
|
value: 40.6 |
|
- type: ndcg_at_100 |
|
value: 37.848 |
|
- type: ndcg_at_1000 |
|
value: 46.657 |
|
- type: ndcg_at_3 |
|
value: 46.117999999999995 |
|
- type: ndcg_at_5 |
|
value: 43.619 |
|
- type: precision_at_1 |
|
value: 51.393 |
|
- type: precision_at_10 |
|
value: 30.31 |
|
- type: precision_at_100 |
|
value: 9.972 |
|
- type: precision_at_1000 |
|
value: 2.329 |
|
- type: precision_at_3 |
|
value: 43.137 |
|
- type: precision_at_5 |
|
value: 37.585 |
|
- type: recall_at_1 |
|
value: 7.165000000000001 |
|
- type: recall_at_10 |
|
value: 19.689999999999998 |
|
- type: recall_at_100 |
|
value: 39.237 |
|
- type: recall_at_1000 |
|
value: 71.417 |
|
- type: recall_at_3 |
|
value: 12.247 |
|
- type: recall_at_5 |
|
value: 14.902999999999999 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/nq |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 |
|
metrics: |
|
- type: map_at_1 |
|
value: 42.653999999999996 |
|
- type: map_at_10 |
|
value: 59.611999999999995 |
|
- type: map_at_100 |
|
value: 60.32300000000001 |
|
- type: map_at_1000 |
|
value: 60.336 |
|
- type: map_at_3 |
|
value: 55.584999999999994 |
|
- type: map_at_5 |
|
value: 58.19 |
|
- type: mrr_at_1 |
|
value: 47.683 |
|
- type: mrr_at_10 |
|
value: 62.06700000000001 |
|
- type: mrr_at_100 |
|
value: 62.537 |
|
- type: mrr_at_1000 |
|
value: 62.544999999999995 |
|
- type: mrr_at_3 |
|
value: 59.178 |
|
- type: mrr_at_5 |
|
value: 61.034 |
|
- type: ndcg_at_1 |
|
value: 47.654 |
|
- type: ndcg_at_10 |
|
value: 67.001 |
|
- type: ndcg_at_100 |
|
value: 69.73899999999999 |
|
- type: ndcg_at_1000 |
|
value: 69.986 |
|
- type: ndcg_at_3 |
|
value: 59.95700000000001 |
|
- type: ndcg_at_5 |
|
value: 64.025 |
|
- type: precision_at_1 |
|
value: 47.654 |
|
- type: precision_at_10 |
|
value: 10.367999999999999 |
|
- type: precision_at_100 |
|
value: 1.192 |
|
- type: precision_at_1000 |
|
value: 0.121 |
|
- type: precision_at_3 |
|
value: 26.651000000000003 |
|
- type: precision_at_5 |
|
value: 18.459 |
|
- type: recall_at_1 |
|
value: 42.653999999999996 |
|
- type: recall_at_10 |
|
value: 86.619 |
|
- type: recall_at_100 |
|
value: 98.04899999999999 |
|
- type: recall_at_1000 |
|
value: 99.812 |
|
- type: recall_at_3 |
|
value: 68.987 |
|
- type: recall_at_5 |
|
value: 78.158 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 72.538 |
|
- type: map_at_10 |
|
value: 86.702 |
|
- type: map_at_100 |
|
value: 87.31 |
|
- type: map_at_1000 |
|
value: 87.323 |
|
- type: map_at_3 |
|
value: 83.87 |
|
- type: map_at_5 |
|
value: 85.682 |
|
- type: mrr_at_1 |
|
value: 83.31 |
|
- type: mrr_at_10 |
|
value: 89.225 |
|
- type: mrr_at_100 |
|
value: 89.30399999999999 |
|
- type: mrr_at_1000 |
|
value: 89.30399999999999 |
|
- type: mrr_at_3 |
|
value: 88.44300000000001 |
|
- type: mrr_at_5 |
|
value: 89.005 |
|
- type: ndcg_at_1 |
|
value: 83.32000000000001 |
|
- type: ndcg_at_10 |
|
value: 90.095 |
|
- type: ndcg_at_100 |
|
value: 91.12 |
|
- type: ndcg_at_1000 |
|
value: 91.179 |
|
- type: ndcg_at_3 |
|
value: 87.606 |
|
- type: ndcg_at_5 |
|
value: 89.031 |
|
- type: precision_at_1 |
|
value: 83.32000000000001 |
|
- type: precision_at_10 |
|
value: 13.641 |
|
- type: precision_at_100 |
|
value: 1.541 |
|
- type: precision_at_1000 |
|
value: 0.157 |
|
- type: precision_at_3 |
|
value: 38.377 |
|
- type: precision_at_5 |
|
value: 25.162000000000003 |
|
- type: recall_at_1 |
|
value: 72.538 |
|
- type: recall_at_10 |
|
value: 96.47200000000001 |
|
- type: recall_at_100 |
|
value: 99.785 |
|
- type: recall_at_1000 |
|
value: 99.99900000000001 |
|
- type: recall_at_3 |
|
value: 89.278 |
|
- type: recall_at_5 |
|
value: 93.367 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb |
|
metrics: |
|
- type: v_measure |
|
value: 73.55219145406065 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
revision: 282350215ef01743dc01b456c7f5241fa8937f16 |
|
metrics: |
|
- type: v_measure |
|
value: 74.13437105242755 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/scidocs |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 6.873 |
|
- type: map_at_10 |
|
value: 17.944 |
|
- type: map_at_100 |
|
value: 21.171 |
|
- type: map_at_1000 |
|
value: 21.528 |
|
- type: map_at_3 |
|
value: 12.415 |
|
- type: map_at_5 |
|
value: 15.187999999999999 |
|
- type: mrr_at_1 |
|
value: 33.800000000000004 |
|
- type: mrr_at_10 |
|
value: 46.455 |
|
- type: mrr_at_100 |
|
value: 47.378 |
|
- type: mrr_at_1000 |
|
value: 47.394999999999996 |
|
- type: mrr_at_3 |
|
value: 42.367 |
|
- type: mrr_at_5 |
|
value: 44.972 |
|
- type: ndcg_at_1 |
|
value: 33.800000000000004 |
|
- type: ndcg_at_10 |
|
value: 28.907 |
|
- type: ndcg_at_100 |
|
value: 39.695 |
|
- type: ndcg_at_1000 |
|
value: 44.582 |
|
- type: ndcg_at_3 |
|
value: 26.949 |
|
- type: ndcg_at_5 |
|
value: 23.988 |
|
- type: precision_at_1 |
|
value: 33.800000000000004 |
|
- type: precision_at_10 |
|
value: 15.079999999999998 |
|
- type: precision_at_100 |
|
value: 3.056 |
|
- type: precision_at_1000 |
|
value: 0.42100000000000004 |
|
- type: precision_at_3 |
|
value: 25.167 |
|
- type: precision_at_5 |
|
value: 21.26 |
|
- type: recall_at_1 |
|
value: 6.873 |
|
- type: recall_at_10 |
|
value: 30.568 |
|
- type: recall_at_100 |
|
value: 62.062 |
|
- type: recall_at_1000 |
|
value: 85.37700000000001 |
|
- type: recall_at_3 |
|
value: 15.312999999999999 |
|
- type: recall_at_5 |
|
value: 21.575 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.37009118256057 |
|
- type: cos_sim_spearman |
|
value: 79.27986395671529 |
|
- type: euclidean_pearson |
|
value: 79.18037715442115 |
|
- type: euclidean_spearman |
|
value: 79.28004791561621 |
|
- type: manhattan_pearson |
|
value: 79.34062972800541 |
|
- type: manhattan_spearman |
|
value: 79.43106695543402 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 87.48474767383833 |
|
- type: cos_sim_spearman |
|
value: 79.54505388752513 |
|
- type: euclidean_pearson |
|
value: 83.43282704179565 |
|
- type: euclidean_spearman |
|
value: 79.54579919925405 |
|
- type: manhattan_pearson |
|
value: 83.77564492427952 |
|
- type: manhattan_spearman |
|
value: 79.84558396989286 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 88.803698035802 |
|
- type: cos_sim_spearman |
|
value: 88.83451367754881 |
|
- type: euclidean_pearson |
|
value: 88.28939285711628 |
|
- type: euclidean_spearman |
|
value: 88.83528996073112 |
|
- type: manhattan_pearson |
|
value: 88.28017412671795 |
|
- type: manhattan_spearman |
|
value: 88.9228828016344 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 85.27469288153428 |
|
- type: cos_sim_spearman |
|
value: 83.87477064876288 |
|
- type: euclidean_pearson |
|
value: 84.2601737035379 |
|
- type: euclidean_spearman |
|
value: 83.87431082479074 |
|
- type: manhattan_pearson |
|
value: 84.3621547772745 |
|
- type: manhattan_spearman |
|
value: 84.12094375000423 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 88.12749863201587 |
|
- type: cos_sim_spearman |
|
value: 88.54287568368565 |
|
- type: euclidean_pearson |
|
value: 87.90429700607999 |
|
- type: euclidean_spearman |
|
value: 88.5437689576261 |
|
- type: manhattan_pearson |
|
value: 88.19276653356833 |
|
- type: manhattan_spearman |
|
value: 88.99995393814679 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 85.68398747560902 |
|
- type: cos_sim_spearman |
|
value: 86.48815303460574 |
|
- type: euclidean_pearson |
|
value: 85.52356631237954 |
|
- type: euclidean_spearman |
|
value: 86.486391949551 |
|
- type: manhattan_pearson |
|
value: 85.67267981761788 |
|
- type: manhattan_spearman |
|
value: 86.7073696332485 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 88.9057107443124 |
|
- type: cos_sim_spearman |
|
value: 88.7312168757697 |
|
- type: euclidean_pearson |
|
value: 88.72810439714794 |
|
- type: euclidean_spearman |
|
value: 88.71976185854771 |
|
- type: manhattan_pearson |
|
value: 88.50433745949111 |
|
- type: manhattan_spearman |
|
value: 88.51726175544195 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
revision: eea2b4fe26a775864c896887d910b76a8098ad3f |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 67.59391795109886 |
|
- type: cos_sim_spearman |
|
value: 66.87613008631367 |
|
- type: euclidean_pearson |
|
value: 69.23198488262217 |
|
- type: euclidean_spearman |
|
value: 66.85427723013692 |
|
- type: manhattan_pearson |
|
value: 69.50730124841084 |
|
- type: manhattan_spearman |
|
value: 67.10404669820792 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 87.0820605344619 |
|
- type: cos_sim_spearman |
|
value: 86.8518089863434 |
|
- type: euclidean_pearson |
|
value: 86.31087134689284 |
|
- type: euclidean_spearman |
|
value: 86.8518520517941 |
|
- type: manhattan_pearson |
|
value: 86.47203796160612 |
|
- type: manhattan_spearman |
|
value: 87.1080149734421 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab |
|
metrics: |
|
- type: map |
|
value: 89.09255369305481 |
|
- type: mrr |
|
value: 97.10323445617563 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/scifact |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
revision: 0228b52cf27578f30900b9e5271d331663a030d7 |
|
metrics: |
|
- type: map_at_1 |
|
value: 61.260999999999996 |
|
- type: map_at_10 |
|
value: 74.043 |
|
- type: map_at_100 |
|
value: 74.37700000000001 |
|
- type: map_at_1000 |
|
value: 74.384 |
|
- type: map_at_3 |
|
value: 71.222 |
|
- type: map_at_5 |
|
value: 72.875 |
|
- type: mrr_at_1 |
|
value: 64.333 |
|
- type: mrr_at_10 |
|
value: 74.984 |
|
- type: mrr_at_100 |
|
value: 75.247 |
|
- type: mrr_at_1000 |
|
value: 75.25500000000001 |
|
- type: mrr_at_3 |
|
value: 73.167 |
|
- type: mrr_at_5 |
|
value: 74.35000000000001 |
|
- type: ndcg_at_1 |
|
value: 64.333 |
|
- type: ndcg_at_10 |
|
value: 79.06 |
|
- type: ndcg_at_100 |
|
value: 80.416 |
|
- type: ndcg_at_1000 |
|
value: 80.55600000000001 |
|
- type: ndcg_at_3 |
|
value: 74.753 |
|
- type: ndcg_at_5 |
|
value: 76.97500000000001 |
|
- type: precision_at_1 |
|
value: 64.333 |
|
- type: precision_at_10 |
|
value: 10.567 |
|
- type: precision_at_100 |
|
value: 1.1199999999999999 |
|
- type: precision_at_1000 |
|
value: 0.11299999999999999 |
|
- type: precision_at_3 |
|
value: 29.889 |
|
- type: precision_at_5 |
|
value: 19.533 |
|
- type: recall_at_1 |
|
value: 61.260999999999996 |
|
- type: recall_at_10 |
|
value: 93.167 |
|
- type: recall_at_100 |
|
value: 99.0 |
|
- type: recall_at_1000 |
|
value: 100.0 |
|
- type: recall_at_3 |
|
value: 81.667 |
|
- type: recall_at_5 |
|
value: 87.394 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.71980198019801 |
|
- type: cos_sim_ap |
|
value: 92.81616007802704 |
|
- type: cos_sim_f1 |
|
value: 85.17548454688318 |
|
- type: cos_sim_precision |
|
value: 89.43894389438944 |
|
- type: cos_sim_recall |
|
value: 81.3 |
|
- type: dot_accuracy |
|
value: 99.71980198019801 |
|
- type: dot_ap |
|
value: 92.81398760591358 |
|
- type: dot_f1 |
|
value: 85.17548454688318 |
|
- type: dot_precision |
|
value: 89.43894389438944 |
|
- type: dot_recall |
|
value: 81.3 |
|
- type: euclidean_accuracy |
|
value: 99.71980198019801 |
|
- type: euclidean_ap |
|
value: 92.81560637245072 |
|
- type: euclidean_f1 |
|
value: 85.17548454688318 |
|
- type: euclidean_precision |
|
value: 89.43894389438944 |
|
- type: euclidean_recall |
|
value: 81.3 |
|
- type: manhattan_accuracy |
|
value: 99.73069306930694 |
|
- type: manhattan_ap |
|
value: 93.14005487480794 |
|
- type: manhattan_f1 |
|
value: 85.56263269639068 |
|
- type: manhattan_precision |
|
value: 91.17647058823529 |
|
- type: manhattan_recall |
|
value: 80.60000000000001 |
|
- type: max_accuracy |
|
value: 99.73069306930694 |
|
- type: max_ap |
|
value: 93.14005487480794 |
|
- type: max_f1 |
|
value: 85.56263269639068 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 |
|
metrics: |
|
- type: v_measure |
|
value: 79.86443362395185 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44 |
|
metrics: |
|
- type: v_measure |
|
value: 49.40897096662564 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 |
|
metrics: |
|
- type: map |
|
value: 55.66040806627947 |
|
- type: mrr |
|
value: 56.58670475766064 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
config: default |
|
split: test |
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 31.51015090598575 |
|
- type: cos_sim_spearman |
|
value: 31.35016454939226 |
|
- type: dot_pearson |
|
value: 31.5150068731 |
|
- type: dot_spearman |
|
value: 31.34790869023487 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/trec-covid |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.254 |
|
- type: map_at_10 |
|
value: 2.064 |
|
- type: map_at_100 |
|
value: 12.909 |
|
- type: map_at_1000 |
|
value: 31.761 |
|
- type: map_at_3 |
|
value: 0.738 |
|
- type: map_at_5 |
|
value: 1.155 |
|
- type: mrr_at_1 |
|
value: 96.0 |
|
- type: mrr_at_10 |
|
value: 98.0 |
|
- type: mrr_at_100 |
|
value: 98.0 |
|
- type: mrr_at_1000 |
|
value: 98.0 |
|
- type: mrr_at_3 |
|
value: 98.0 |
|
- type: mrr_at_5 |
|
value: 98.0 |
|
- type: ndcg_at_1 |
|
value: 93.0 |
|
- type: ndcg_at_10 |
|
value: 82.258 |
|
- type: ndcg_at_100 |
|
value: 64.34 |
|
- type: ndcg_at_1000 |
|
value: 57.912 |
|
- type: ndcg_at_3 |
|
value: 90.827 |
|
- type: ndcg_at_5 |
|
value: 86.79 |
|
- type: precision_at_1 |
|
value: 96.0 |
|
- type: precision_at_10 |
|
value: 84.8 |
|
- type: precision_at_100 |
|
value: 66.0 |
|
- type: precision_at_1000 |
|
value: 25.356 |
|
- type: precision_at_3 |
|
value: 94.667 |
|
- type: precision_at_5 |
|
value: 90.4 |
|
- type: recall_at_1 |
|
value: 0.254 |
|
- type: recall_at_10 |
|
value: 2.1950000000000003 |
|
- type: recall_at_100 |
|
value: 16.088 |
|
- type: recall_at_1000 |
|
value: 54.559000000000005 |
|
- type: recall_at_3 |
|
value: 0.75 |
|
- type: recall_at_5 |
|
value: 1.191 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/touche2020 |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f |
|
metrics: |
|
- type: map_at_1 |
|
value: 2.976 |
|
- type: map_at_10 |
|
value: 11.389000000000001 |
|
- type: map_at_100 |
|
value: 18.429000000000002 |
|
- type: map_at_1000 |
|
value: 20.113 |
|
- type: map_at_3 |
|
value: 6.483 |
|
- type: map_at_5 |
|
value: 8.770999999999999 |
|
- type: mrr_at_1 |
|
value: 40.816 |
|
- type: mrr_at_10 |
|
value: 58.118 |
|
- type: mrr_at_100 |
|
value: 58.489999999999995 |
|
- type: mrr_at_1000 |
|
value: 58.489999999999995 |
|
- type: mrr_at_3 |
|
value: 53.061 |
|
- type: mrr_at_5 |
|
value: 57.041 |
|
- type: ndcg_at_1 |
|
value: 40.816 |
|
- type: ndcg_at_10 |
|
value: 30.567 |
|
- type: ndcg_at_100 |
|
value: 42.44 |
|
- type: ndcg_at_1000 |
|
value: 53.480000000000004 |
|
- type: ndcg_at_3 |
|
value: 36.016 |
|
- type: ndcg_at_5 |
|
value: 34.257 |
|
- type: precision_at_1 |
|
value: 42.857 |
|
- type: precision_at_10 |
|
value: 25.714 |
|
- type: precision_at_100 |
|
value: 8.429 |
|
- type: precision_at_1000 |
|
value: 1.5939999999999999 |
|
- type: precision_at_3 |
|
value: 36.735 |
|
- type: precision_at_5 |
|
value: 33.878 |
|
- type: recall_at_1 |
|
value: 2.976 |
|
- type: recall_at_10 |
|
value: 17.854999999999997 |
|
- type: recall_at_100 |
|
value: 51.833 |
|
- type: recall_at_1000 |
|
value: 86.223 |
|
- type: recall_at_3 |
|
value: 7.887 |
|
- type: recall_at_5 |
|
value: 12.026 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c |
|
metrics: |
|
- type: accuracy |
|
value: 85.1174 |
|
- type: ap |
|
value: 30.169441069345748 |
|
- type: f1 |
|
value: 69.79254701873245 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a |
|
metrics: |
|
- type: accuracy |
|
value: 72.58347481607245 |
|
- type: f1 |
|
value: 72.74877295564937 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 |
|
metrics: |
|
- type: v_measure |
|
value: 53.90586138221305 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 87.35769207844072 |
|
- type: cos_sim_ap |
|
value: 77.9645072410354 |
|
- type: cos_sim_f1 |
|
value: 71.32352941176471 |
|
- type: cos_sim_precision |
|
value: 66.5903890160183 |
|
- type: cos_sim_recall |
|
value: 76.78100263852242 |
|
- type: dot_accuracy |
|
value: 87.37557370209214 |
|
- type: dot_ap |
|
value: 77.96250046429908 |
|
- type: dot_f1 |
|
value: 71.28932757557064 |
|
- type: dot_precision |
|
value: 66.95249130938586 |
|
- type: dot_recall |
|
value: 76.22691292875989 |
|
- type: euclidean_accuracy |
|
value: 87.35173153722357 |
|
- type: euclidean_ap |
|
value: 77.96520460741593 |
|
- type: euclidean_f1 |
|
value: 71.32470733210104 |
|
- type: euclidean_precision |
|
value: 66.91329479768785 |
|
- type: euclidean_recall |
|
value: 76.35883905013192 |
|
- type: manhattan_accuracy |
|
value: 87.25636287774931 |
|
- type: manhattan_ap |
|
value: 77.77752485611796 |
|
- type: manhattan_f1 |
|
value: 71.18148599269183 |
|
- type: manhattan_precision |
|
value: 66.10859728506787 |
|
- type: manhattan_recall |
|
value: 77.0976253298153 |
|
- type: max_accuracy |
|
value: 87.37557370209214 |
|
- type: max_ap |
|
value: 77.96520460741593 |
|
- type: max_f1 |
|
value: 71.32470733210104 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 89.38176737687739 |
|
- type: cos_sim_ap |
|
value: 86.58811861657401 |
|
- type: cos_sim_f1 |
|
value: 79.09430644097604 |
|
- type: cos_sim_precision |
|
value: 75.45085977911366 |
|
- type: cos_sim_recall |
|
value: 83.10748383122882 |
|
- type: dot_accuracy |
|
value: 89.38370784336554 |
|
- type: dot_ap |
|
value: 86.58840606004333 |
|
- type: dot_f1 |
|
value: 79.10179860068133 |
|
- type: dot_precision |
|
value: 75.44546153308643 |
|
- type: dot_recall |
|
value: 83.13058207576223 |
|
- type: euclidean_accuracy |
|
value: 89.38564830985369 |
|
- type: euclidean_ap |
|
value: 86.58820721061164 |
|
- type: euclidean_f1 |
|
value: 79.09070942235888 |
|
- type: euclidean_precision |
|
value: 75.38729937194697 |
|
- type: euclidean_recall |
|
value: 83.17677856482906 |
|
- type: manhattan_accuracy |
|
value: 89.40699344122326 |
|
- type: manhattan_ap |
|
value: 86.60631843011362 |
|
- type: manhattan_f1 |
|
value: 79.14949970570925 |
|
- type: manhattan_precision |
|
value: 75.78191039729502 |
|
- type: manhattan_recall |
|
value: 82.83030489682784 |
|
- type: max_accuracy |
|
value: 89.40699344122326 |
|
- type: max_ap |
|
value: 86.60631843011362 |
|
- type: max_f1 |
|
value: 79.14949970570925 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/AFQMC |
|
name: MTEB AFQMC |
|
config: default |
|
split: validation |
|
revision: b44c3b011063adb25877c13823db83bb193913c4 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 65.58442135663871 |
|
- type: cos_sim_spearman |
|
value: 72.2538631361313 |
|
- type: euclidean_pearson |
|
value: 70.97255486607429 |
|
- type: euclidean_spearman |
|
value: 72.25374250228647 |
|
- type: manhattan_pearson |
|
value: 70.83250199989911 |
|
- type: manhattan_spearman |
|
value: 72.14819496536272 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/ATEC |
|
name: MTEB ATEC |
|
config: default |
|
split: test |
|
revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 59.99478404929932 |
|
- type: cos_sim_spearman |
|
value: 62.61836216999812 |
|
- type: euclidean_pearson |
|
value: 66.86429811933593 |
|
- type: euclidean_spearman |
|
value: 62.6183520374191 |
|
- type: manhattan_pearson |
|
value: 66.8063778911633 |
|
- type: manhattan_spearman |
|
value: 62.569607573241115 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (zh) |
|
config: zh |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 53.98400000000001 |
|
- type: f1 |
|
value: 51.21447361350723 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/BQ |
|
name: MTEB BQ |
|
config: default |
|
split: test |
|
revision: e3dda5e115e487b39ec7e618c0c6a29137052a55 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 79.11941660686553 |
|
- type: cos_sim_spearman |
|
value: 81.25029594540435 |
|
- type: euclidean_pearson |
|
value: 82.06973504238826 |
|
- type: euclidean_spearman |
|
value: 81.2501989488524 |
|
- type: manhattan_pearson |
|
value: 82.10094630392753 |
|
- type: manhattan_spearman |
|
value: 81.27987244392389 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/CLSClusteringP2P |
|
name: MTEB CLSClusteringP2P |
|
config: default |
|
split: test |
|
revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476 |
|
metrics: |
|
- type: v_measure |
|
value: 47.07270168705156 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/CLSClusteringS2S |
|
name: MTEB CLSClusteringS2S |
|
config: default |
|
split: test |
|
revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f |
|
metrics: |
|
- type: v_measure |
|
value: 45.98511703185043 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/CMedQAv1-reranking |
|
name: MTEB CMedQAv1 |
|
config: default |
|
split: test |
|
revision: 8d7f1e942507dac42dc58017c1a001c3717da7df |
|
metrics: |
|
- type: map |
|
value: 88.19895157194931 |
|
- type: mrr |
|
value: 90.21424603174603 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/CMedQAv2-reranking |
|
name: MTEB CMedQAv2 |
|
config: default |
|
split: test |
|
revision: 23d186750531a14a0357ca22cd92d712fd512ea0 |
|
metrics: |
|
- type: map |
|
value: 88.03317320980119 |
|
- type: mrr |
|
value: 89.9461507936508 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/CmedqaRetrieval |
|
name: MTEB CmedqaRetrieval |
|
config: default |
|
split: dev |
|
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301 |
|
metrics: |
|
- type: map_at_1 |
|
value: 29.037000000000003 |
|
- type: map_at_10 |
|
value: 42.001 |
|
- type: map_at_100 |
|
value: 43.773 |
|
- type: map_at_1000 |
|
value: 43.878 |
|
- type: map_at_3 |
|
value: 37.637 |
|
- type: map_at_5 |
|
value: 40.034 |
|
- type: mrr_at_1 |
|
value: 43.136 |
|
- type: mrr_at_10 |
|
value: 51.158 |
|
- type: mrr_at_100 |
|
value: 52.083 |
|
- type: mrr_at_1000 |
|
value: 52.12 |
|
- type: mrr_at_3 |
|
value: 48.733 |
|
- type: mrr_at_5 |
|
value: 50.025 |
|
- type: ndcg_at_1 |
|
value: 43.136 |
|
- type: ndcg_at_10 |
|
value: 48.685 |
|
- type: ndcg_at_100 |
|
value: 55.513 |
|
- type: ndcg_at_1000 |
|
value: 57.242000000000004 |
|
- type: ndcg_at_3 |
|
value: 43.329 |
|
- type: ndcg_at_5 |
|
value: 45.438 |
|
- type: precision_at_1 |
|
value: 43.136 |
|
- type: precision_at_10 |
|
value: 10.56 |
|
- type: precision_at_100 |
|
value: 1.6129999999999998 |
|
- type: precision_at_1000 |
|
value: 0.184 |
|
- type: precision_at_3 |
|
value: 24.064 |
|
- type: precision_at_5 |
|
value: 17.269000000000002 |
|
- type: recall_at_1 |
|
value: 29.037000000000003 |
|
- type: recall_at_10 |
|
value: 59.245000000000005 |
|
- type: recall_at_100 |
|
value: 87.355 |
|
- type: recall_at_1000 |
|
value: 98.74000000000001 |
|
- type: recall_at_3 |
|
value: 42.99 |
|
- type: recall_at_5 |
|
value: 49.681999999999995 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: C-MTEB/CMNLI |
|
name: MTEB Cmnli |
|
config: default |
|
split: validation |
|
revision: 41bc36f332156f7adc9e38f53777c959b2ae9766 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 82.68190018039687 |
|
- type: cos_sim_ap |
|
value: 90.18017125327886 |
|
- type: cos_sim_f1 |
|
value: 83.64080906868193 |
|
- type: cos_sim_precision |
|
value: 79.7076890489303 |
|
- type: cos_sim_recall |
|
value: 87.98223053542202 |
|
- type: dot_accuracy |
|
value: 82.68190018039687 |
|
- type: dot_ap |
|
value: 90.18782350103646 |
|
- type: dot_f1 |
|
value: 83.64242087729039 |
|
- type: dot_precision |
|
value: 79.65313028764805 |
|
- type: dot_recall |
|
value: 88.05237315875614 |
|
- type: euclidean_accuracy |
|
value: 82.68190018039687 |
|
- type: euclidean_ap |
|
value: 90.1801957900632 |
|
- type: euclidean_f1 |
|
value: 83.63636363636364 |
|
- type: euclidean_precision |
|
value: 79.52772506852203 |
|
- type: euclidean_recall |
|
value: 88.19265840542437 |
|
- type: manhattan_accuracy |
|
value: 82.14070956103427 |
|
- type: manhattan_ap |
|
value: 89.96178420101427 |
|
- type: manhattan_f1 |
|
value: 83.21087838578791 |
|
- type: manhattan_precision |
|
value: 78.35605121850475 |
|
- type: manhattan_recall |
|
value: 88.70703764320785 |
|
- type: max_accuracy |
|
value: 82.68190018039687 |
|
- type: max_ap |
|
value: 90.18782350103646 |
|
- type: max_f1 |
|
value: 83.64242087729039 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/CovidRetrieval |
|
name: MTEB CovidRetrieval |
|
config: default |
|
split: dev |
|
revision: 1271c7809071a13532e05f25fb53511ffce77117 |
|
metrics: |
|
- type: map_at_1 |
|
value: 72.234 |
|
- type: map_at_10 |
|
value: 80.10000000000001 |
|
- type: map_at_100 |
|
value: 80.36 |
|
- type: map_at_1000 |
|
value: 80.363 |
|
- type: map_at_3 |
|
value: 78.315 |
|
- type: map_at_5 |
|
value: 79.607 |
|
- type: mrr_at_1 |
|
value: 72.392 |
|
- type: mrr_at_10 |
|
value: 80.117 |
|
- type: mrr_at_100 |
|
value: 80.36999999999999 |
|
- type: mrr_at_1000 |
|
value: 80.373 |
|
- type: mrr_at_3 |
|
value: 78.469 |
|
- type: mrr_at_5 |
|
value: 79.633 |
|
- type: ndcg_at_1 |
|
value: 72.392 |
|
- type: ndcg_at_10 |
|
value: 83.651 |
|
- type: ndcg_at_100 |
|
value: 84.749 |
|
- type: ndcg_at_1000 |
|
value: 84.83000000000001 |
|
- type: ndcg_at_3 |
|
value: 80.253 |
|
- type: ndcg_at_5 |
|
value: 82.485 |
|
- type: precision_at_1 |
|
value: 72.392 |
|
- type: precision_at_10 |
|
value: 9.557 |
|
- type: precision_at_100 |
|
value: 1.004 |
|
- type: precision_at_1000 |
|
value: 0.101 |
|
- type: precision_at_3 |
|
value: 28.732000000000003 |
|
- type: precision_at_5 |
|
value: 18.377 |
|
- type: recall_at_1 |
|
value: 72.234 |
|
- type: recall_at_10 |
|
value: 94.573 |
|
- type: recall_at_100 |
|
value: 99.368 |
|
- type: recall_at_1000 |
|
value: 100.0 |
|
- type: recall_at_3 |
|
value: 85.669 |
|
- type: recall_at_5 |
|
value: 91.01700000000001 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/DuRetrieval |
|
name: MTEB DuRetrieval |
|
config: default |
|
split: dev |
|
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced |
|
metrics: |
|
- type: map_at_1 |
|
value: 26.173999999999996 |
|
- type: map_at_10 |
|
value: 80.04 |
|
- type: map_at_100 |
|
value: 82.94500000000001 |
|
- type: map_at_1000 |
|
value: 82.98100000000001 |
|
- type: map_at_3 |
|
value: 55.562999999999995 |
|
- type: map_at_5 |
|
value: 69.89800000000001 |
|
- type: mrr_at_1 |
|
value: 89.5 |
|
- type: mrr_at_10 |
|
value: 92.996 |
|
- type: mrr_at_100 |
|
value: 93.06400000000001 |
|
- type: mrr_at_1000 |
|
value: 93.065 |
|
- type: mrr_at_3 |
|
value: 92.658 |
|
- type: mrr_at_5 |
|
value: 92.84599999999999 |
|
- type: ndcg_at_1 |
|
value: 89.5 |
|
- type: ndcg_at_10 |
|
value: 87.443 |
|
- type: ndcg_at_100 |
|
value: 90.253 |
|
- type: ndcg_at_1000 |
|
value: 90.549 |
|
- type: ndcg_at_3 |
|
value: 85.874 |
|
- type: ndcg_at_5 |
|
value: 84.842 |
|
- type: precision_at_1 |
|
value: 89.5 |
|
- type: precision_at_10 |
|
value: 41.805 |
|
- type: precision_at_100 |
|
value: 4.827 |
|
- type: precision_at_1000 |
|
value: 0.49 |
|
- type: precision_at_3 |
|
value: 76.85 |
|
- type: precision_at_5 |
|
value: 64.8 |
|
- type: recall_at_1 |
|
value: 26.173999999999996 |
|
- type: recall_at_10 |
|
value: 89.101 |
|
- type: recall_at_100 |
|
value: 98.08099999999999 |
|
- type: recall_at_1000 |
|
value: 99.529 |
|
- type: recall_at_3 |
|
value: 57.902 |
|
- type: recall_at_5 |
|
value: 74.602 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/EcomRetrieval |
|
name: MTEB EcomRetrieval |
|
config: default |
|
split: dev |
|
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9 |
|
metrics: |
|
- type: map_at_1 |
|
value: 56.10000000000001 |
|
- type: map_at_10 |
|
value: 66.15299999999999 |
|
- type: map_at_100 |
|
value: 66.625 |
|
- type: map_at_1000 |
|
value: 66.636 |
|
- type: map_at_3 |
|
value: 63.632999999999996 |
|
- type: map_at_5 |
|
value: 65.293 |
|
- type: mrr_at_1 |
|
value: 56.10000000000001 |
|
- type: mrr_at_10 |
|
value: 66.15299999999999 |
|
- type: mrr_at_100 |
|
value: 66.625 |
|
- type: mrr_at_1000 |
|
value: 66.636 |
|
- type: mrr_at_3 |
|
value: 63.632999999999996 |
|
- type: mrr_at_5 |
|
value: 65.293 |
|
- type: ndcg_at_1 |
|
value: 56.10000000000001 |
|
- type: ndcg_at_10 |
|
value: 71.146 |
|
- type: ndcg_at_100 |
|
value: 73.27799999999999 |
|
- type: ndcg_at_1000 |
|
value: 73.529 |
|
- type: ndcg_at_3 |
|
value: 66.09 |
|
- type: ndcg_at_5 |
|
value: 69.08999999999999 |
|
- type: precision_at_1 |
|
value: 56.10000000000001 |
|
- type: precision_at_10 |
|
value: 8.68 |
|
- type: precision_at_100 |
|
value: 0.964 |
|
- type: precision_at_1000 |
|
value: 0.098 |
|
- type: precision_at_3 |
|
value: 24.4 |
|
- type: precision_at_5 |
|
value: 16.1 |
|
- type: recall_at_1 |
|
value: 56.10000000000001 |
|
- type: recall_at_10 |
|
value: 86.8 |
|
- type: recall_at_100 |
|
value: 96.39999999999999 |
|
- type: recall_at_1000 |
|
value: 98.3 |
|
- type: recall_at_3 |
|
value: 73.2 |
|
- type: recall_at_5 |
|
value: 80.5 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/IFlyTek-classification |
|
name: MTEB IFlyTek |
|
config: default |
|
split: validation |
|
revision: 421605374b29664c5fc098418fe20ada9bd55f8a |
|
metrics: |
|
- type: accuracy |
|
value: 54.52096960369373 |
|
- type: f1 |
|
value: 40.930845295808695 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/JDReview-classification |
|
name: MTEB JDReview |
|
config: default |
|
split: test |
|
revision: b7c64bd89eb87f8ded463478346f76731f07bf8b |
|
metrics: |
|
- type: accuracy |
|
value: 86.51031894934334 |
|
- type: ap |
|
value: 55.9516014323483 |
|
- type: f1 |
|
value: 81.54813679326381 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/LCQMC |
|
name: MTEB LCQMC |
|
config: default |
|
split: test |
|
revision: 17f9b096f80380fce5ed12a9be8be7784b337daf |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 69.67437838574276 |
|
- type: cos_sim_spearman |
|
value: 73.81314174653045 |
|
- type: euclidean_pearson |
|
value: 72.63430276680275 |
|
- type: euclidean_spearman |
|
value: 73.81358736777001 |
|
- type: manhattan_pearson |
|
value: 72.58743833842829 |
|
- type: manhattan_spearman |
|
value: 73.7590419009179 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/Mmarco-reranking |
|
name: MTEB MMarcoReranking |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map |
|
value: 31.648613483640254 |
|
- type: mrr |
|
value: 30.37420634920635 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/MMarcoRetrieval |
|
name: MTEB MMarcoRetrieval |
|
config: default |
|
split: dev |
|
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2 |
|
metrics: |
|
- type: map_at_1 |
|
value: 73.28099999999999 |
|
- type: map_at_10 |
|
value: 81.977 |
|
- type: map_at_100 |
|
value: 82.222 |
|
- type: map_at_1000 |
|
value: 82.22699999999999 |
|
- type: map_at_3 |
|
value: 80.441 |
|
- type: map_at_5 |
|
value: 81.46600000000001 |
|
- type: mrr_at_1 |
|
value: 75.673 |
|
- type: mrr_at_10 |
|
value: 82.41000000000001 |
|
- type: mrr_at_100 |
|
value: 82.616 |
|
- type: mrr_at_1000 |
|
value: 82.621 |
|
- type: mrr_at_3 |
|
value: 81.094 |
|
- type: mrr_at_5 |
|
value: 81.962 |
|
- type: ndcg_at_1 |
|
value: 75.673 |
|
- type: ndcg_at_10 |
|
value: 85.15599999999999 |
|
- type: ndcg_at_100 |
|
value: 86.151 |
|
- type: ndcg_at_1000 |
|
value: 86.26899999999999 |
|
- type: ndcg_at_3 |
|
value: 82.304 |
|
- type: ndcg_at_5 |
|
value: 84.009 |
|
- type: precision_at_1 |
|
value: 75.673 |
|
- type: precision_at_10 |
|
value: 10.042 |
|
- type: precision_at_100 |
|
value: 1.052 |
|
- type: precision_at_1000 |
|
value: 0.106 |
|
- type: precision_at_3 |
|
value: 30.673000000000002 |
|
- type: precision_at_5 |
|
value: 19.326999999999998 |
|
- type: recall_at_1 |
|
value: 73.28099999999999 |
|
- type: recall_at_10 |
|
value: 94.446 |
|
- type: recall_at_100 |
|
value: 98.737 |
|
- type: recall_at_1000 |
|
value: 99.649 |
|
- type: recall_at_3 |
|
value: 86.984 |
|
- type: recall_at_5 |
|
value: 91.024 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 81.08607935440484 |
|
- type: f1 |
|
value: 78.24879986066307 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 86.05917955615332 |
|
- type: f1 |
|
value: 85.05279279434997 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/MedicalRetrieval |
|
name: MTEB MedicalRetrieval |
|
config: default |
|
split: dev |
|
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6 |
|
metrics: |
|
- type: map_at_1 |
|
value: 56.2 |
|
- type: map_at_10 |
|
value: 62.57899999999999 |
|
- type: map_at_100 |
|
value: 63.154999999999994 |
|
- type: map_at_1000 |
|
value: 63.193 |
|
- type: map_at_3 |
|
value: 61.217 |
|
- type: map_at_5 |
|
value: 62.012 |
|
- type: mrr_at_1 |
|
value: 56.3 |
|
- type: mrr_at_10 |
|
value: 62.629000000000005 |
|
- type: mrr_at_100 |
|
value: 63.205999999999996 |
|
- type: mrr_at_1000 |
|
value: 63.244 |
|
- type: mrr_at_3 |
|
value: 61.267 |
|
- type: mrr_at_5 |
|
value: 62.062 |
|
- type: ndcg_at_1 |
|
value: 56.2 |
|
- type: ndcg_at_10 |
|
value: 65.592 |
|
- type: ndcg_at_100 |
|
value: 68.657 |
|
- type: ndcg_at_1000 |
|
value: 69.671 |
|
- type: ndcg_at_3 |
|
value: 62.808 |
|
- type: ndcg_at_5 |
|
value: 64.24499999999999 |
|
- type: precision_at_1 |
|
value: 56.2 |
|
- type: precision_at_10 |
|
value: 7.5 |
|
- type: precision_at_100 |
|
value: 0.899 |
|
- type: precision_at_1000 |
|
value: 0.098 |
|
- type: precision_at_3 |
|
value: 22.467000000000002 |
|
- type: precision_at_5 |
|
value: 14.180000000000001 |
|
- type: recall_at_1 |
|
value: 56.2 |
|
- type: recall_at_10 |
|
value: 75.0 |
|
- type: recall_at_100 |
|
value: 89.9 |
|
- type: recall_at_1000 |
|
value: 97.89999999999999 |
|
- type: recall_at_3 |
|
value: 67.4 |
|
- type: recall_at_5 |
|
value: 70.89999999999999 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/MultilingualSentiment-classification |
|
name: MTEB MultilingualSentiment |
|
config: default |
|
split: validation |
|
revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a |
|
metrics: |
|
- type: accuracy |
|
value: 76.87666666666667 |
|
- type: f1 |
|
value: 76.7317686219665 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: C-MTEB/OCNLI |
|
name: MTEB Ocnli |
|
config: default |
|
split: validation |
|
revision: 66e76a618a34d6d565d5538088562851e6daa7ec |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 79.64266377910124 |
|
- type: cos_sim_ap |
|
value: 84.78274442344829 |
|
- type: cos_sim_f1 |
|
value: 81.16947472745292 |
|
- type: cos_sim_precision |
|
value: 76.47058823529412 |
|
- type: cos_sim_recall |
|
value: 86.48363252375924 |
|
- type: dot_accuracy |
|
value: 79.64266377910124 |
|
- type: dot_ap |
|
value: 84.7851404063692 |
|
- type: dot_f1 |
|
value: 81.16947472745292 |
|
- type: dot_precision |
|
value: 76.47058823529412 |
|
- type: dot_recall |
|
value: 86.48363252375924 |
|
- type: euclidean_accuracy |
|
value: 79.64266377910124 |
|
- type: euclidean_ap |
|
value: 84.78068373762378 |
|
- type: euclidean_f1 |
|
value: 81.14794656110837 |
|
- type: euclidean_precision |
|
value: 76.35009310986965 |
|
- type: euclidean_recall |
|
value: 86.58922914466737 |
|
- type: manhattan_accuracy |
|
value: 79.48023822414727 |
|
- type: manhattan_ap |
|
value: 84.72928897427576 |
|
- type: manhattan_f1 |
|
value: 81.32084770823064 |
|
- type: manhattan_precision |
|
value: 76.24768946395564 |
|
- type: manhattan_recall |
|
value: 87.11721224920802 |
|
- type: max_accuracy |
|
value: 79.64266377910124 |
|
- type: max_ap |
|
value: 84.7851404063692 |
|
- type: max_f1 |
|
value: 81.32084770823064 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/OnlineShopping-classification |
|
name: MTEB OnlineShopping |
|
config: default |
|
split: test |
|
revision: e610f2ebd179a8fda30ae534c3878750a96db120 |
|
metrics: |
|
- type: accuracy |
|
value: 94.3 |
|
- type: ap |
|
value: 92.8664032274438 |
|
- type: f1 |
|
value: 94.29311102997727 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/PAWSX |
|
name: MTEB PAWSX |
|
config: default |
|
split: test |
|
revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 48.51392279882909 |
|
- type: cos_sim_spearman |
|
value: 54.06338895994974 |
|
- type: euclidean_pearson |
|
value: 52.58480559573412 |
|
- type: euclidean_spearman |
|
value: 54.06417276612201 |
|
- type: manhattan_pearson |
|
value: 52.69525121721343 |
|
- type: manhattan_spearman |
|
value: 54.048147455389675 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/QBQTC |
|
name: MTEB QBQTC |
|
config: default |
|
split: test |
|
revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 29.728387290757325 |
|
- type: cos_sim_spearman |
|
value: 31.366121633635284 |
|
- type: euclidean_pearson |
|
value: 29.14588368552961 |
|
- type: euclidean_spearman |
|
value: 31.36764411112844 |
|
- type: manhattan_pearson |
|
value: 29.63517350523121 |
|
- type: manhattan_spearman |
|
value: 31.94157020583762 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh) |
|
config: zh |
|
split: test |
|
revision: eea2b4fe26a775864c896887d910b76a8098ad3f |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 63.64868296271406 |
|
- type: cos_sim_spearman |
|
value: 66.12800618164744 |
|
- type: euclidean_pearson |
|
value: 63.21405767340238 |
|
- type: euclidean_spearman |
|
value: 66.12786567790748 |
|
- type: manhattan_pearson |
|
value: 64.04300276525848 |
|
- type: manhattan_spearman |
|
value: 66.5066857145652 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/STSB |
|
name: MTEB STSB |
|
config: default |
|
split: test |
|
revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 81.2302623912794 |
|
- type: cos_sim_spearman |
|
value: 81.16833673266562 |
|
- type: euclidean_pearson |
|
value: 79.47647843876024 |
|
- type: euclidean_spearman |
|
value: 81.16944349524972 |
|
- type: manhattan_pearson |
|
value: 79.84947238492208 |
|
- type: manhattan_spearman |
|
value: 81.64626599410026 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/T2Reranking |
|
name: MTEB T2Reranking |
|
config: default |
|
split: dev |
|
revision: 76631901a18387f85eaa53e5450019b87ad58ef9 |
|
metrics: |
|
- type: map |
|
value: 67.80129586475687 |
|
- type: mrr |
|
value: 77.77402311635554 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/T2Retrieval |
|
name: MTEB T2Retrieval |
|
config: default |
|
split: dev |
|
revision: 8731a845f1bf500a4f111cf1070785c793d10e64 |
|
metrics: |
|
- type: map_at_1 |
|
value: 28.666999999999998 |
|
- type: map_at_10 |
|
value: 81.063 |
|
- type: map_at_100 |
|
value: 84.504 |
|
- type: map_at_1000 |
|
value: 84.552 |
|
- type: map_at_3 |
|
value: 56.897 |
|
- type: map_at_5 |
|
value: 70.073 |
|
- type: mrr_at_1 |
|
value: 92.087 |
|
- type: mrr_at_10 |
|
value: 94.132 |
|
- type: mrr_at_100 |
|
value: 94.19800000000001 |
|
- type: mrr_at_1000 |
|
value: 94.19999999999999 |
|
- type: mrr_at_3 |
|
value: 93.78999999999999 |
|
- type: mrr_at_5 |
|
value: 94.002 |
|
- type: ndcg_at_1 |
|
value: 92.087 |
|
- type: ndcg_at_10 |
|
value: 87.734 |
|
- type: ndcg_at_100 |
|
value: 90.736 |
|
- type: ndcg_at_1000 |
|
value: 91.184 |
|
- type: ndcg_at_3 |
|
value: 88.78 |
|
- type: ndcg_at_5 |
|
value: 87.676 |
|
- type: precision_at_1 |
|
value: 92.087 |
|
- type: precision_at_10 |
|
value: 43.46 |
|
- type: precision_at_100 |
|
value: 5.07 |
|
- type: precision_at_1000 |
|
value: 0.518 |
|
- type: precision_at_3 |
|
value: 77.49000000000001 |
|
- type: precision_at_5 |
|
value: 65.194 |
|
- type: recall_at_1 |
|
value: 28.666999999999998 |
|
- type: recall_at_10 |
|
value: 86.632 |
|
- type: recall_at_100 |
|
value: 96.646 |
|
- type: recall_at_1000 |
|
value: 98.917 |
|
- type: recall_at_3 |
|
value: 58.333999999999996 |
|
- type: recall_at_5 |
|
value: 72.974 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/TNews-classification |
|
name: MTEB TNews |
|
config: default |
|
split: validation |
|
revision: 317f262bf1e6126357bbe89e875451e4b0938fe4 |
|
metrics: |
|
- type: accuracy |
|
value: 52.971999999999994 |
|
- type: f1 |
|
value: 50.2898280984929 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/ThuNewsClusteringP2P |
|
name: MTEB ThuNewsClusteringP2P |
|
config: default |
|
split: test |
|
revision: 5798586b105c0434e4f0fe5e767abe619442cf93 |
|
metrics: |
|
- type: v_measure |
|
value: 86.0797948663824 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/ThuNewsClusteringS2S |
|
name: MTEB ThuNewsClusteringS2S |
|
config: default |
|
split: test |
|
revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d |
|
metrics: |
|
- type: v_measure |
|
value: 85.10759092255017 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/VideoRetrieval |
|
name: MTEB VideoRetrieval |
|
config: default |
|
split: dev |
|
revision: 58c2597a5943a2ba48f4668c3b90d796283c5639 |
|
metrics: |
|
- type: map_at_1 |
|
value: 65.60000000000001 |
|
- type: map_at_10 |
|
value: 74.773 |
|
- type: map_at_100 |
|
value: 75.128 |
|
- type: map_at_1000 |
|
value: 75.136 |
|
- type: map_at_3 |
|
value: 73.05 |
|
- type: map_at_5 |
|
value: 74.13499999999999 |
|
- type: mrr_at_1 |
|
value: 65.60000000000001 |
|
- type: mrr_at_10 |
|
value: 74.773 |
|
- type: mrr_at_100 |
|
value: 75.128 |
|
- type: mrr_at_1000 |
|
value: 75.136 |
|
- type: mrr_at_3 |
|
value: 73.05 |
|
- type: mrr_at_5 |
|
value: 74.13499999999999 |
|
- type: ndcg_at_1 |
|
value: 65.60000000000001 |
|
- type: ndcg_at_10 |
|
value: 78.84299999999999 |
|
- type: ndcg_at_100 |
|
value: 80.40899999999999 |
|
- type: ndcg_at_1000 |
|
value: 80.57 |
|
- type: ndcg_at_3 |
|
value: 75.40599999999999 |
|
- type: ndcg_at_5 |
|
value: 77.351 |
|
- type: precision_at_1 |
|
value: 65.60000000000001 |
|
- type: precision_at_10 |
|
value: 9.139999999999999 |
|
- type: precision_at_100 |
|
value: 0.984 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_3 |
|
value: 27.400000000000002 |
|
- type: precision_at_5 |
|
value: 17.380000000000003 |
|
- type: recall_at_1 |
|
value: 65.60000000000001 |
|
- type: recall_at_10 |
|
value: 91.4 |
|
- type: recall_at_100 |
|
value: 98.4 |
|
- type: recall_at_1000 |
|
value: 99.6 |
|
- type: recall_at_3 |
|
value: 82.19999999999999 |
|
- type: recall_at_5 |
|
value: 86.9 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/waimai-classification |
|
name: MTEB Waimai |
|
config: default |
|
split: test |
|
revision: 339287def212450dcaa9df8c22bf93e9980c7023 |
|
metrics: |
|
- type: accuracy |
|
value: 89.47 |
|
- type: ap |
|
value: 75.59561751845389 |
|
- type: f1 |
|
value: 87.95207751382563 |
|
--- |
|
|
|
## gte-Qwen2-7B-instruct |
|
|
|
**gte-Qwen2-7B-instruct** is the latest model in the gte (General Text Embedding) model family that ranks **No.1** in both English and Chinese evaluations on the Massive Text Embedding Benchmark [MTEB benchmark](https://huggingface.co/spaces/mteb/leaderboard) (as of June 16, 2024). |
|
|
|
Recently, the [**Qwen team**](https://huggingface.co/Qwen) released the Qwen2 series models, and we have trained the **gte-Qwen2-7B-instruct** model based on the [Qwen2-7B](https://huggingface.co/Qwen/Qwen2-7B) LLM model. Compared to the [gte-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) model, the **gte-Qwen2-7B-instruct** model uses the same training data and training strategies during the finetuning stage, with the only difference being the upgraded base model to Qwen2-7B. Considering the improvements in the Qwen2 series models compared to the Qwen1.5 series, we can also expect consistent performance enhancements in the embedding models. |
|
|
|
The model incorporates several key advancements: |
|
|
|
- Integration of bidirectional attention mechanisms, enriching its contextual understanding. |
|
- Instruction tuning, applied solely on the query side for streamlined efficiency |
|
- Comprehensive training across a vast, multilingual text corpus spanning diverse domains and scenarios. This training leverages both weakly supervised and supervised data, ensuring the model's applicability across numerous languages and a wide array of downstream tasks. |
|
|
|
|
|
## Model Information |
|
- Model Size: 7B |
|
- Embedding Dimension: 4096 |
|
- Max Input Tokens: 32k |
|
|
|
## Requirements |
|
``` |
|
transformers>=4.39.2 |
|
flash_attn>=2.5.6 |
|
``` |
|
## Usage |
|
|
|
### Sentence Transformers |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
model = SentenceTransformer("Alibaba-NLP/gte-Qwen2-7B-instruct", trust_remote_code=True) |
|
# In case you want to reduce the maximum length: |
|
model.max_seq_length = 8192 |
|
|
|
queries = [ |
|
"how much protein should a female eat", |
|
"summit define", |
|
] |
|
documents = [ |
|
"As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", |
|
"Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments.", |
|
] |
|
|
|
query_embeddings = model.encode(queries, prompt_name="query") |
|
document_embeddings = model.encode(documents) |
|
|
|
scores = (query_embeddings @ document_embeddings.T) * 100 |
|
print(scores.tolist()) |
|
``` |
|
|
|
Observe the [config_sentence_transformers.json](config_sentence_transformers.json) to see all pre-built prompt names. Otherwise, you can use `model.encode(queries, prompt="Instruct: ...\nQuery: "` to use a custom prompt of your choice. |
|
|
|
### Transformers |
|
|
|
```python |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from torch import Tensor |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
|
|
def last_token_pool(last_hidden_states: Tensor, |
|
attention_mask: Tensor) -> Tensor: |
|
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) |
|
if left_padding: |
|
return last_hidden_states[:, -1] |
|
else: |
|
sequence_lengths = attention_mask.sum(dim=1) - 1 |
|
batch_size = last_hidden_states.shape[0] |
|
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] |
|
|
|
|
|
def get_detailed_instruct(task_description: str, query: str) -> str: |
|
return f'Instruct: {task_description}\nQuery: {query}' |
|
|
|
|
|
# Each query must come with a one-sentence instruction that describes the task |
|
task = 'Given a web search query, retrieve relevant passages that answer the query' |
|
queries = [ |
|
get_detailed_instruct(task, 'how much protein should a female eat'), |
|
get_detailed_instruct(task, 'summit define') |
|
] |
|
# No need to add instruction for retrieval documents |
|
documents = [ |
|
"As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", |
|
"Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." |
|
] |
|
input_texts = queries + documents |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-Qwen2-7B-instruct', trust_remote_code=True) |
|
model = AutoModel.from_pretrained('Alibaba-NLP/gte-Qwen2-7B-instruct', trust_remote_code=True) |
|
|
|
max_length = 8192 |
|
|
|
# Tokenize the input texts |
|
batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt') |
|
outputs = model(**batch_dict) |
|
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask']) |
|
|
|
# normalize embeddings |
|
embeddings = F.normalize(embeddings, p=2, dim=1) |
|
scores = (embeddings[:2] @ embeddings[2:].T) * 100 |
|
print(scores.tolist()) |
|
``` |
|
|
|
## Evaluation |
|
|
|
### MTEB & C-MTEB |
|
|
|
You can use the [scripts/eval_mteb.py](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct/blob/main/scripts/eval_mteb.py) to reproduce the following result of **gte-Qwen2-7B-instruct** on MTEB(English)/C-MTEB(Chinese): |
|
|
|
| Model Name | MTEB(56) | C-MTEB(35) | |
|
|:----:|:---------:|:----------:| |
|
| [bge-base-en-1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 64.23 | - | |
|
| [bge-large-en-1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 63.55 | - | |
|
| [gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 65.39 | - | |
|
| [gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 64.11 | - | |
|
| [mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) | 64.68 | - | |
|
| [acge_text_embedding](https://huggingface.co/aspire/acge_text_embedding) | - | 69.07 | |
|
| [stella-mrl-large-zh-v3.5-1792d](https://huggingface.co/infgrad/stella-mrl-large-zh-v3.5-1792d) | - | 68.55 | |
|
| [gte-large-zh](https://huggingface.co/thenlper/gte-large-zh) | - | 66.72 | |
|
| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 59.45 | 56.21 | |
|
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 61.50 | 58.81 | |
|
| [e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct) | 66.63 | 60.81 | |
|
| [gte-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) | 67.34 | 69.52 | |
|
| [NV-Embed-v1](https://huggingface.co/nvidia/NV-Embed-v1) | 69.32 | - | |
|
| [**gte-Qwen2-7B-instruct**](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) | **70.04** | **71.98** | |
|
|
|
### GTE Models |
|
|
|
The gte series models have consistently released two types of models: encoder-only models (based on the BERT architecture) and decode-only models (based on the LLM architecture). |
|
|
|
| Models | Language | Max Sequence Length | Dimension | Model Size (Memory Usage, fp32) | |
|
|:-------------------------------------------------------------------------------------:|:--------:|:-----: |:---------:|:-------------------------------:| |
|
| [GTE-large-zh](https://huggingface.co/thenlper/gte-large-zh) | Chinese | 512 | 1024 | 1.25GB | |
|
| [GTE-base-zh](https://huggingface.co/thenlper/gte-base-zh) | Chinese | 512 | 512 | 0.41GB | |
|
| [GTE-small-zh](https://huggingface.co/thenlper/gte-small-zh) | Chinese | 512 | 512 | 0.12GB | |
|
| [GTE-large](https://huggingface.co/thenlper/gte-large) | English | 512 | 1024 | 1.25GB | |
|
| [GTE-base](https://huggingface.co/thenlper/gte-base) | English | 512 | 512 | 0.21GB | |
|
| [GTE-small](https://huggingface.co/thenlper/gte-small) | English | 512 | 384 | 0.10GB | |
|
| [GTE-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | English | 8192 | 1024 | 1.74GB | |
|
| [GTE-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) | English | 8192 | 768 | 0.51GB | |
|
| [GTE-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) | Multilingual | 32000 | 4096 | 26.45GB | |
|
| [GTE-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) | Multilingual | 32000 | 4096 | 26.45GB | |
|
|
|
## Citation |
|
|
|
If you find our paper or models helpful, please consider cite: |
|
|
|
``` |
|
@article{li2023towards, |
|
title={Towards general text embeddings with multi-stage contrastive learning}, |
|
author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan}, |
|
journal={arXiv preprint arXiv:2308.03281}, |
|
year={2023} |
|
} |
|
``` |