YAML Metadata
Warning:
The pipeline tag "conversational" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, text2text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, any-to-any, other
Model description
DialoGPT finetuned on empathetic dialogues
Training data
It was trained on a large corpus of text, including some emotionally engaging datasets such as the "Facebook Empathetic Dialogues" dataset containing 25k conversations. A dataset of 25k conversations grounded in emotional situations to facilitate training and evaluating dialogue systems. You can find a dataset here.
How to use
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("AliiaR/DialoGPT-medium-empathetic-dialogues")
>>> model = AutoModelForCausalLM.from_pretrained("AliiaR/DialoGPT-medium-empathetic-dialogues")
- Downloads last month
- 146
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.