Alvin-Nahabwe's picture
update model card README.md
a71dab9
|
raw
history blame
3.72 kB
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-lg-pt
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-lg-pt
This model is a fine-tuned version of [Alvin-Nahabwe/wav2vec2-large-xls-r-300m-gn](https://huggingface.co/Alvin-Nahabwe/wav2vec2-large-xls-r-300m-gn) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2974
- Wer: 0.1465
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.3826 | 0.81 | 400 | 0.2260 | 0.2142 |
| 0.3513 | 1.61 | 800 | 0.2164 | 0.2289 |
| 0.3211 | 2.42 | 1200 | 0.1950 | 0.1895 |
| 0.2939 | 3.22 | 1600 | 0.1977 | 0.1969 |
| 0.2886 | 4.03 | 2000 | 0.1973 | 0.1957 |
| 0.2613 | 4.84 | 2400 | 0.1897 | 0.1825 |
| 0.2566 | 5.64 | 2800 | 0.1878 | 0.1753 |
| 0.2406 | 6.45 | 3200 | 0.1844 | 0.1713 |
| 0.2292 | 7.25 | 3600 | 0.1919 | 0.1706 |
| 0.2176 | 8.06 | 4000 | 0.1965 | 0.1681 |
| 0.2115 | 8.86 | 4400 | 0.1945 | 0.1746 |
| 0.1933 | 9.67 | 4800 | 0.2041 | 0.1712 |
| 0.1878 | 10.48 | 5200 | 0.2098 | 0.1718 |
| 0.1806 | 11.29 | 5600 | 0.2071 | 0.1666 |
| 0.1737 | 12.09 | 6000 | 0.2253 | 0.1655 |
| 0.1652 | 12.9 | 6400 | 0.2087 | 0.1627 |
| 0.1627 | 13.71 | 6800 | 0.2157 | 0.1666 |
| 0.1516 | 14.51 | 7200 | 0.2120 | 0.1687 |
| 0.1432 | 15.32 | 7600 | 0.2186 | 0.1715 |
| 0.1371 | 16.12 | 8000 | 0.2199 | 0.1681 |
| 0.1284 | 16.93 | 8400 | 0.2115 | 0.1647 |
| 0.1215 | 17.74 | 8800 | 0.2304 | 0.1568 |
| 0.115 | 18.55 | 9200 | 0.2322 | 0.1549 |
| 0.1122 | 19.35 | 9600 | 0.2427 | 0.1541 |
| 0.1041 | 20.16 | 10000 | 0.2512 | 0.1531 |
| 0.0999 | 20.96 | 10400 | 0.2526 | 0.1559 |
| 0.0929 | 21.77 | 10800 | 0.2591 | 0.1536 |
| 0.0877 | 22.58 | 11200 | 0.2645 | 0.1525 |
| 0.082 | 23.39 | 11600 | 0.2692 | 0.1494 |
| 0.0787 | 24.19 | 12000 | 0.2742 | 0.1530 |
| 0.0758 | 25.0 | 12400 | 0.2794 | 0.1484 |
| 0.0713 | 25.8 | 12800 | 0.2817 | 0.1493 |
| 0.0687 | 26.61 | 13200 | 0.2881 | 0.1491 |
| 0.065 | 27.42 | 13600 | 0.2945 | 0.1487 |
| 0.0619 | 28.22 | 14000 | 0.2955 | 0.1478 |
| 0.0592 | 29.03 | 14400 | 0.2965 | 0.1472 |
| 0.0569 | 29.84 | 14800 | 0.2974 | 0.1465 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3