|
--- |
|
license: mit |
|
language: |
|
- en |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
library_name: transformers |
|
pipeline_tag: text-classification |
|
--- |
|
# Total Samples |
|
Samples: 716017(Train+Test) |
|
|
|
Training Samples: 579973 |
|
|
|
Validation Samples :64442 |
|
|
|
Test Samples :71602 |
|
|
|
# Overall Metrics |
|
Accuracy :92% |
|
|
|
F1 Score:92% |
|
|
|
Recall:92% |
|
|
|
Precisison: 92% |
|
|
|
# Fine Tune Parameters |
|
No of epochs: 3 |
|
|
|
Batch Size: 16 |
|
|
|
evaluation startegy: epoch |
|
|
|
optimiser:Adamw |
|
|
|
learning_rate:2e-5 |
|
|
|
max_steps:1000 |
|
|
|
warmup_step: 100 |
|
|
|
Monitoring Train & Evaluation:WANDB API |
|
|
|
# Train |
|
train_runtime': 1594.4072, 'train_samples_per_second': 80.281, 'train_steps_per_second': 0.627, 'total_flos': 5589761482241280.0, 'train_loss': 0.26639655661582945, 'epoch': 0.22 |
|
|
|
# Validation |
|
'eval_loss': 0.22991116344928741,'eval_accuracy': 0.9211073523478477,'eval_precision': 0.9213582014463746,'eval_recall': 0.921107352347847'eval_f1': 0.9210970707304227, |
|
|
|
'eval_runtime': 238.5409,'eval_samples_per_second': 270.151,'eval_steps_per_second': 8.443,'epoch': 0.22 |