|
--- |
|
language: |
|
- ar |
|
widget: |
|
- text: "لقد كان الاحتفال رائع" |
|
- text: "هناك بعض القوانين التي يجب تغيرها" |
|
- text: "الخدمة كانت سيئة" |
|
tags: |
|
- text classification |
|
- Sentiment |
|
--- |
|
## Arabic-MARBERT-Sentiment Model |
|
#### Model description |
|
**Arabic-MARBERT-Sentiment Model** is a Sentiment analysis model that was built by fine-tuning the [MARBERT](https://huggingface.co/UBC-NLP/MARBERT) model. For the fine-tuning, I used [KAUST dataset](https://www.kaggle.com/competitions/arabic-sentiment-analysis-2021-kaust), which includes 3 labels(positive,negative,and neutral). |
|
|
|
|
|
#### How to use |
|
To use the model with a transformers pipeline: |
|
```python |
|
>>>from transformers import pipeline |
|
>>>model = pipeline('text-classification', model='Ammar-alhaj-ali/arabic-MARBERT-sentiment') |
|
>>>sentences = ['لقد استمتعت بالحفلة', 'خدمة المطعم كانت محبطة'] |
|
>>>model(sentences) |
|
[{'label': 'positive', 'score': 0.9577557444572449}, |
|
{'label': 'negative', 'score': 0.9158180952072144}] |
|
|
|
|