metadata
license: mit
base_model: Amna100/PreTraining-MLM
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: fold_13
results: []
fold_13
This model is a fine-tuned version of Amna100/PreTraining-MLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0130
- Precision: 0.6241
- Recall: 0.6471
- F1: 0.6354
- Accuracy: 0.9992
- Roc Auc: 0.9941
- Pr Auc: 0.9998
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Roc Auc | Pr Auc |
---|---|---|---|---|---|---|---|---|---|
0.0315 | 1.0 | 632 | 0.0130 | 0.6241 | 0.6471 | 0.6354 | 0.9992 | 0.9941 | 0.9998 |
0.0103 | 2.0 | 1264 | 0.0131 | 0.7550 | 0.5588 | 0.6423 | 0.9992 | 0.9941 | 0.9998 |
0.0065 | 3.0 | 1896 | 0.0140 | 0.7949 | 0.6078 | 0.6889 | 0.9993 | 0.9936 | 0.9998 |
0.0022 | 4.0 | 2528 | 0.0160 | 0.7875 | 0.6814 | 0.7306 | 0.9994 | 0.9901 | 0.9997 |
Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1