|
--- |
|
license: mit |
|
base_model: Amna100/PreTraining-MLM |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: fold_3 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/amnasaeed100/FineTuning-ADE-change1/runs/94wgcdtp) |
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/amnasaeed100/FineTuning-ADE-change1/runs/8g0cixov) |
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/amnasaeed100/FineTuning-ADE-change1/runs/05nc4r5u) |
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/amnasaeed100/FineTuning-ADE-change1/runs/2tfkcyde) |
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/amnasaeed100/FineTuning-ADE-change1/runs/2zf1k4id) |
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/amnasaeed100/FineTuning-ADE-change1/runs/qyo3k3m3) |
|
# fold_3 |
|
|
|
This model is a fine-tuned version of [Amna100/PreTraining-MLM](https://huggingface.co/Amna100/PreTraining-MLM) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0185 |
|
- Precision: 0.1834 |
|
- Recall: 0.3042 |
|
- F1: 0.5248 |
|
- Pr Auc: 0.6009 |
|
- Roc Auc: 0.8987 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Pr Auc | Roc Auc | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:------:|:-------:| |
|
| 0.0306 | 1.0 | 630 | 0.0134 | 0.3745 | 0.9507 | 0.7320 | 0.6102 | 0.9543 | |
|
| 0.01 | 2.0 | 1260 | 0.0119 | 0.5987 | 0.1560 | 0.1560 | 0.5802 | 0.9372 | |
|
| 0.0057 | 3.0 | 1890 | 0.0131 | 0.0581 | 0.8662 | 0.6011 | 0.5880 | 0.9473 | |
|
| 0.0013 | 4.0 | 2520 | 0.0173 | 0.7081 | 0.0206 | 0.9699 | 0.6219 | 0.9066 | |
|
| 0.0006 | 5.0 | 3150 | 0.0185 | 0.8324 | 0.2123 | 0.1818 | 0.6009 | 0.8987 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.0.dev0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|