File size: 3,181 Bytes
a89faf2
 
 
 
 
 
 
 
 
0dea54f
a89faf2
 
 
 
 
 
 
 
2af351c
 
 
 
 
a89faf2
 
 
 
2af351c
 
 
 
 
 
0dea54f
a89faf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26fe470
a89faf2
 
 
 
 
0dea54f
a89faf2
 
 
0dea54f
 
2af351c
 
 
 
 
a89faf2
 
 
 
26fe470
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: mit
base_model: Amna100/PreTraining-MLM
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: fold_4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/amnasaeed100/FineTuning-ADE-Repeatedfold/runs/lvieenf2)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/amnasaeed100/FineTuning-ADE-Repeatedfold/runs/fgis28rc)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/amnasaeed100/FineTuning-ADE-Repeatedfold/runs/9tw0vsla)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/amnasaeed100/FineTuning-ADE-Repeatedfold/runs/ccjl3n87)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/amnasaeed100/FineTuning-ADE-Repeatedfold/runs/geyuezlx)
# fold_4

This model is a fine-tuned version of [Amna100/PreTraining-MLM](https://huggingface.co/Amna100/PreTraining-MLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0087
- Precision: 0.6815
- Recall: 0.6257
- F1: 0.6524
- Accuracy: 0.9994
- Roc Auc: 0.9964
- Pr Auc: 0.9999

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy | Roc Auc | Pr Auc |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------:|:------:|
| 0.0371        | 1.0   | 632  | 0.0188          | 0.8481    | 0.1959 | 0.3183 | 0.9991   | 0.9803  | 0.9996 |
| 0.0137        | 2.0   | 1264 | 0.0087          | 0.6815    | 0.6257 | 0.6524 | 0.9994   | 0.9964  | 0.9999 |
| 0.0078        | 3.0   | 1896 | 0.0094          | 0.6262    | 0.7690 | 0.6903 | 0.9993   | 0.9976  | 0.9999 |
| 0.0029        | 4.0   | 2528 | 0.0111          | 0.6216    | 0.7251 | 0.6694 | 0.9993   | 0.9965  | 0.9999 |
| 0.0018        | 5.0   | 3160 | 0.0125          | 0.8044    | 0.6374 | 0.7113 | 0.9995   | 0.9967  | 0.9999 |


### Framework versions

- Transformers 4.41.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1