Angelectronic's picture
End of training
1b3c5fc verified
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- unsloth
- generated_from_trainer
base_model: unsloth/llama-3-8b-Instruct-bnb-4bit
model-index:
- name: llama3-chat_50000_500
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama3-chat_50000_500
This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct-bnb-4bit](https://huggingface.co/unsloth/llama-3-8b-Instruct-bnb-4bit) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7378
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 3407
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.7748 | 0.128 | 100 | 1.4928 |
| 1.5097 | 0.256 | 200 | 1.4743 |
| 1.5122 | 0.384 | 300 | 1.4623 |
| 1.4924 | 0.512 | 400 | 1.4609 |
| 1.485 | 0.64 | 500 | 1.4526 |
| 1.4779 | 0.768 | 600 | 1.4511 |
| 1.4728 | 0.896 | 700 | 1.4446 |
| 1.4476 | 1.024 | 800 | 1.4512 |
| 1.3725 | 1.152 | 900 | 1.4558 |
| 1.3747 | 1.28 | 1000 | 1.4560 |
| 1.3735 | 1.408 | 1100 | 1.4548 |
| 1.3717 | 1.536 | 1200 | 1.4499 |
| 1.3694 | 1.6640 | 1300 | 1.4526 |
| 1.3698 | 1.792 | 1400 | 1.4542 |
| 1.3701 | 1.92 | 1500 | 1.4512 |
| 1.3004 | 2.048 | 1600 | 1.4977 |
| 1.1904 | 2.176 | 1700 | 1.5075 |
| 1.1977 | 2.304 | 1800 | 1.5041 |
| 1.1888 | 2.432 | 1900 | 1.5094 |
| 1.1885 | 2.56 | 2000 | 1.5024 |
| 1.1989 | 2.6880 | 2100 | 1.5039 |
| 1.1905 | 2.816 | 2200 | 1.5046 |
| 1.1914 | 2.944 | 2300 | 1.5077 |
| 1.0764 | 3.072 | 2400 | 1.6027 |
| 0.9757 | 3.2 | 2500 | 1.6227 |
| 0.9768 | 3.328 | 2600 | 1.6228 |
| 0.9795 | 3.456 | 2700 | 1.6225 |
| 0.9775 | 3.584 | 2800 | 1.6190 |
| 0.9781 | 3.7120 | 2900 | 1.6164 |
| 0.981 | 3.84 | 3000 | 1.6199 |
| 0.9812 | 3.968 | 3100 | 1.6254 |
| 0.8731 | 4.096 | 3200 | 1.7307 |
| 0.8376 | 4.224 | 3300 | 1.7343 |
| 0.8352 | 4.352 | 3400 | 1.7398 |
| 0.8429 | 4.48 | 3500 | 1.7357 |
| 0.8431 | 4.608 | 3600 | 1.7386 |
| 0.8383 | 4.736 | 3700 | 1.7380 |
| 0.8375 | 4.864 | 3800 | 1.7376 |
| 0.842 | 4.992 | 3900 | 1.7378 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1