Configuration Parsing
Warning:
In config.json: "quantization_config.bits" must be an integer
Sample inference script:
import re
from argparse import ArgumentParser
import torch
import torchaudio
from exllamav2 import ExLlamaV2, ExLlamaV2Cache, ExLlamaV2Config, ExLlamaV2Tokenizer
from exllamav2.generator import (
ExLlamaV2DynamicGenerator,
ExLlamaV2DynamicJob,
ExLlamaV2Sampler,
)
from torchaudio import functional as F
from xcodec2.modeling_xcodec2 import XCodec2Model
parser = ArgumentParser()
parser.add_argument("-m", "--model", type=str, required=True)
parser.add_argument("-v", "--vocoder", type=str, required=True)
parser.add_argument("-a", "--audio", type=str, required=True)
parser.add_argument("-t", "--transcript", type=str, required=True)
parser.add_argument("-i", "--input", type=str, required=True)
parser.add_argument("-o", "--output", type=str, required=True)
args = parser.parse_args()
config = ExLlamaV2Config(args.model)
config.max_seq_len = 2048
model = ExLlamaV2(config, lazy_load=True)
cache = ExLlamaV2Cache(model, lazy=True)
model.load_autosplit(cache)
tokenizer = ExLlamaV2Tokenizer(config)
generator = ExLlamaV2DynamicGenerator(model, cache, tokenizer)
audio, sample_rate = torchaudio.load(args.audio)
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
if sample_rate != 16000:
audio = F.resample(audio, sample_rate, 16000)
vocoder = XCodec2Model.from_pretrained(args.vocoder)
vocoder = vocoder.cuda().eval()
input = vocoder.encode_code(audio)
input = input[0, 0, :]
input = [f"<|s_{i}|>" for i in input]
input = "".join(input)
prompt = (
"<|start_header_id|>user<|end_header_id|>\n\n"
"Convert the text to speech:"
"<|TEXT_UNDERSTANDING_START|>"
f"{args.transcript}{args.input}"
"<|TEXT_UNDERSTANDING_END|>"
"<|eot_id|>\n"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
"<|SPEECH_GENERATION_START|>"
f"{input}"
)
input_ids = tokenizer.encode(prompt, add_bos=True, encode_special_tokens=True)
max_new_tokens = config.max_seq_len - input_ids.shape[-1]
gen_settings = ExLlamaV2Sampler.Settings()
gen_settings.temperature = 0.8
gen_settings.top_p = 1.0
stop_conditions = ["<|SPEECH_GENERATION_END|>"]
job = ExLlamaV2DynamicJob(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
gen_settings=gen_settings,
stop_conditions=stop_conditions,
)
generator.enqueue(job)
output = ""
while generator.num_remaining_jobs():
for result in generator.iterate():
if result.get("stage") == "streaming":
text = result.get("text", "")
output += text
if result.get("eos"):
generator.clear_queue()
output = [int(o) for o in re.findall(r"<\|s_(\d+)\|>", output)]
output = torch.tensor([[output]]).cuda()
output = vocoder.decode_code(output)
output = output[0, 0, :]
output = output.unsqueeze(0).cpu()
torchaudio.save(args.output, output, 16000)
- Downloads last month
- 2