wav2vec2-base-Malyalam-large

This model is a fine-tuned version of facebook/wav2vec2-base-960h on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4124
  • Wer: 0.4294
  • Cer: 0.0876

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 6
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
5.755 2.1622 300 3.4394 1.0 1.0
1.5526 4.3243 600 0.7064 0.7488 0.1865
0.6682 6.4865 900 0.5412 0.6252 0.1383
0.4698 8.6486 1200 0.4891 0.5767 0.1271
0.3632 10.8108 1500 0.3958 0.5024 0.1004
0.2918 12.9730 1800 0.4565 0.5020 0.1055
0.2335 15.1351 2100 0.4298 0.4723 0.0981
0.1956 17.2973 2400 0.3805 0.4466 0.0888
0.1665 19.4595 2700 0.4039 0.4311 0.0889
0.1447 21.6216 3000 0.4124 0.4294 0.0876

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 1.18.3
  • Tokenizers 0.19.1
Downloads last month
111
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Anujgr8/wav2vec2-base-Malyalam-large

Finetuned
(123)
this model