|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: t5-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- wikisql |
|
model-index: |
|
- name: t5-small-finetuned-wikisql |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-finetuned-wikisql |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wikisql dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1247 |
|
- Model Preparation Time: 0.0049 |
|
- Rouge1 Precision: 0.873 |
|
- Rouge1 Recall: 0.873 |
|
- Rouge1 Fmeasure: 0.873 |
|
- Rouge2 Precision: 0.7718 |
|
- Rouge2 Recall: 0.7718 |
|
- Rouge2 Fmeasure: 0.7718 |
|
- Rougel Precision: 0.86 |
|
- Rougel Recall: 0.86 |
|
- Rougel Fmeasure: 0.86 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Rouge1 Precision | Rouge1 Recall | Rouge1 Fmeasure | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | Rougel Precision | Rougel Recall | Rougel Fmeasure | |
|
|:-------------:|:-----:|:-----:|:---------------:|:----------------------:|:----------------:|:-------------:|:---------------:|:----------------:|:-------------:|:---------------:|:----------------:|:-------------:|:---------------:| |
|
| 0.1942 | 1.0 | 4049 | 0.1561 | 0.0049 | 0.8629 | 0.8629 | 0.8629 | 0.7471 | 0.7471 | 0.7471 | 0.8471 | 0.8471 | 0.8471 | |
|
| 0.1646 | 2.0 | 8098 | 0.1373 | 0.0049 | 0.8697 | 0.8697 | 0.8697 | 0.763 | 0.763 | 0.763 | 0.8555 | 0.8555 | 0.8555 | |
|
| 0.147 | 3.0 | 12147 | 0.1297 | 0.0049 | 0.8723 | 0.8723 | 0.8723 | 0.7684 | 0.7684 | 0.7684 | 0.8588 | 0.8588 | 0.8588 | |
|
| 0.1412 | 4.0 | 16196 | 0.1256 | 0.0049 | 0.8725 | 0.8725 | 0.8725 | 0.7712 | 0.7712 | 0.7712 | 0.8595 | 0.8595 | 0.8595 | |
|
| 0.14 | 5.0 | 20245 | 0.1247 | 0.0049 | 0.873 | 0.873 | 0.873 | 0.7718 | 0.7718 | 0.7718 | 0.86 | 0.86 | 0.86 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|