|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- cybersecurity |
|
- cyber |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
license: mit |
|
base_model: |
|
- google/canine-c |
|
metrics: |
|
- recall |
|
- accuracy |
|
- precision |
|
- f1 |
|
datasets: |
|
- Anvilogic/Embedder-Typosquat-Training-Dataset |
|
--- |
|
|
|
# SentenceTransformer |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model fine tuned for typosquat detection. Given a domain and a typosquat of that domain, |
|
the embedding vectors produced by this model for both domains should be extremely similar by standard similarity metrics (e.g. cosine similarity). |
|
The model will enable you to search your own custom lists of domains to detect phishing or spearphishing on your organization's specific websites |
|
by searching for potential typosquat targets given a suspicious domain. These targets can be then fed to our detection models, also included in this |
|
collection. |
|
|
|
Two interesting observations while training this model: |
|
* Off the shelf embedding models like MPNet will artificially inflate similarity between similar or related concepts in domains. For example `android.com` and `google.com` are connected since Google owns Android, but the domains are dissimilar in the context of typosquatting. |
|
* For typosquatting detection, character-level tokenization **significantly outperforms** classical tokenization methods. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
- **Developed by:** Anvilogic |
|
- **Model Type:** Sentence Transformer |
|
- **Maximum Sequence Length:** 2048 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Finetuned from model:** [CANINE-c](https://huggingface.co/google/canine-c) |
|
- **Language(s) (NLP):** Multilingual |
|
- **License:** MIT |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: CanineModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Anvilogic/Embedder-typosquat-detect-Canine") |
|
# Run inference |
|
sentences = [ |
|
'google.com', |
|
"anvilogic.com", |
|
'youtube.com', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
### Downstream Usage |
|
This embedding model serves as a preliminary filter to identify potential typosquatted domains. |
|
|
|
- **Generate Embeddings** : Represent legitimate domains as dense vectors. |
|
- **Similarity Scoring** : Calculate cosine similarity to find close matches to a target domain. |
|
- **Cross-Encoder Confirmation** : Pass similar pairs to a cross-encoder for final validation. |
|
This layered approach efficiently narrows down and confirms typosquatting candidates for cybersecurity tasks. |
|
|
|
## Training Details |
|
|
|
### Framework Versions |
|
- Python: 3.10.14 |
|
- Sentence Transformers: 3.2.1 |
|
- Transformers: 4.46.2 |
|
- PyTorch: 2.2.2 |
|
- Tokenizers: 0.20.3 |
|
|
|
### Training Data |
|
|
|
The model was fine-tuned using [Anvilogic/Embedder-Typosquat-Training-Dataset](https://huggingface.co/datasets/Anvilogic/Embedder-Typosquat-Training-Dataset), which contains pairs of domain names and their similarity labels. |
|
The dataset was filtered and converted to the parquet format for efficient processing. |
|
|
|
### Training Procedure |
|
The model was optimized using [MNRLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) |
|
|
|
|
|
|
|
#### Training Hyperparameters |
|
- **Model Architecture**: Embedder fine-tuned from [CANINE-c](https://huggingface.co/google/canine-c) |
|
- **Batch Size**: 64 |
|
- **Epochs**: 3 |
|
- **Learning Rate**: 5 e-5 |
|
- **Warmup Steps**: 100 |
|
- **Weight Decay**: 0.01 |
|
|
|
## Evaluation |
|
|
|
In the final evaluation after training, the model achieved the following metrics on the test set: |
|
|
|
[**Information Retrieval Evaluator**](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#informationretrievalevaluator) |
|
```json |
|
info_retr_eval_dot_accuracy@1 : 0.9938, |
|
info_retr_eval_dot_accuracy@3 : 0.9991, |
|
info_retr_eval_dot_accuracy@5 : 0.9999, |
|
info_retr_eval_dot_accuracy@10 : 1.0, |
|
info_retr_eval_dot_precision@1 : 0.9938, |
|
info_retr_eval_dot_precision@3 : 0.333, |
|
info_retr_eval_dot_precision@5 : 0.2, |
|
info_retr_eval_dot_precision@10 : 0.1, |
|
info_retr_eval_dot_recall@1 : 0.9938, |
|
info_retr_eval_dot_recall@3 : 0.9991, |
|
info_retr_eval_dot_recall@5 : 0.9999, |
|
info_retr_eval_dot_recall@10 : 1.0, |
|
info_retr_eval_dot_ndcg@10 : 0.9974, |
|
info_retr_eval_dot_mrr@10 : 0.9965, |
|
info_retr_eval_dot_map@100 : 0.9965 |
|
``` |
|
[**Paraphrase Mining Evaluator**](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#paraphraseminingevaluator) |
|
```json |
|
para_mine_eval_average_precision : 0.9307, |
|
para_mine_eval_f1 : 0.9113, |
|
para_mine_eval_precision : 0.9197, |
|
para_mine_eval_recall : 0.9031, |
|
para_mine_eval_threshold : 0.6409 |
|
``` |