robust-arabert / README.md
Anwaarma's picture
Upload BertForSequenceClassification
6b9afbb verified
---
base_model: Anwaarma/Improved-Arabert-twitter-sentiment2
metrics:
- accuracy
tags:
- generated_from_trainer
model-index:
- name: robust-arabert
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robust-arabert
This model is a fine-tuned version of [Anwaarma/Improved-Arabert-twitter-sentiment2](https://huggingface.co/Anwaarma/Improved-Arabert-twitter-sentiment2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2072
- Accuracy: 0.94
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log | 0.0546 | 50 | 0.2677 | 0.91 |
| No log | 0.1092 | 100 | 0.2432 | 0.93 |
| No log | 0.1638 | 150 | 0.3328 | 0.91 |
| No log | 0.2183 | 200 | 0.2894 | 0.92 |
| No log | 0.2729 | 250 | 0.3008 | 0.91 |
| No log | 0.3275 | 300 | 0.1951 | 0.93 |
| No log | 0.3821 | 350 | 0.2176 | 0.94 |
| No log | 0.4367 | 400 | 0.2291 | 0.95 |
| No log | 0.4913 | 450 | 0.2678 | 0.93 |
| 0.2068 | 0.5459 | 500 | 0.2975 | 0.9 |
| 0.2068 | 0.6004 | 550 | 0.2245 | 0.92 |
| 0.2068 | 0.6550 | 600 | 0.2014 | 0.94 |
| 0.2068 | 0.7096 | 650 | 0.2189 | 0.93 |
| 0.2068 | 0.7642 | 700 | 0.2272 | 0.94 |
| 0.2068 | 0.8188 | 750 | 0.2148 | 0.92 |
| 0.2068 | 0.8734 | 800 | 0.2082 | 0.94 |
| 0.2068 | 0.9279 | 850 | 0.1869 | 0.93 |
| 0.2068 | 0.9825 | 900 | 0.2166 | 0.95 |
| 0.2068 | 1.0371 | 950 | 0.2095 | 0.94 |
| 0.1852 | 1.0917 | 1000 | 0.2948 | 0.92 |
| 0.1852 | 1.1463 | 1050 | 0.2586 | 0.93 |
| 0.1852 | 1.2009 | 1100 | 0.2669 | 0.93 |
| 0.1852 | 1.2555 | 1150 | 0.2635 | 0.94 |
| 0.1852 | 1.3100 | 1200 | 0.2600 | 0.94 |
| 0.1852 | 1.3646 | 1250 | 0.2290 | 0.95 |
| 0.1852 | 1.4192 | 1300 | 0.2248 | 0.95 |
| 0.1852 | 1.4738 | 1350 | 0.1840 | 0.96 |
| 0.1852 | 1.5284 | 1400 | 0.2366 | 0.95 |
| 0.1852 | 1.5830 | 1450 | 0.2322 | 0.95 |
| 0.1137 | 1.6376 | 1500 | 0.1797 | 0.96 |
| 0.1137 | 1.6921 | 1550 | 0.1662 | 0.96 |
| 0.1137 | 1.7467 | 1600 | 0.1762 | 0.96 |
| 0.1137 | 1.8013 | 1650 | 0.1508 | 0.96 |
| 0.1137 | 1.8559 | 1700 | 0.1996 | 0.95 |
| 0.1137 | 1.9105 | 1750 | 0.2072 | 0.94 |
### Framework versions
- Transformers 4.42.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1