Edit model card

WikiBert2WikiBert

Bert language models can be employed for Summarization tasks. WikiBert2WikiBert is an encoder-decoder transformer model that is initialized using the Persian WikiBert Model weights. The WikiBert Model is a Bert language model which is fine-tuned on Persian Wikipedia. After using the WikiBert weights for initialization, the model is trained for five epochs on PN-summary and Persian BBC datasets.

How to Use:

You can use the code below to get the model's outputs, or you can simply use the demo on the right.

from transformers import (
    BertTokenizerFast,
    EncoderDecoderConfig,
    EncoderDecoderModel,
    BertConfig
)

model_name = 'Arashasg/WikiBert2WikiBert'
tokenizer = BertTokenizerFast.from_pretrained(model_name)
config = EncoderDecoderConfig.from_pretrained(model_name)
model = EncoderDecoderModel.from_pretrained(model_name, config=config)


def generate_summary(text):
    inputs = tokenizer(text, padding="max_length", truncation=True, max_length=512, return_tensors="pt")
    input_ids = inputs.input_ids.to("cuda")
    attention_mask = inputs.attention_mask.to("cuda")

    outputs = model.generate(input_ids, attention_mask=attention_mask)

    output_str = tokenizer.batch_decode(outputs, skip_special_tokens=True)


    return output_str

input = 'your input comes here'
summary = generate_summary(input)

Evaluation

I separated 5 percent of the pn-summary for evaluation of the model. The rouge scores of the model are as follows:

Rouge-1 Rouge-2 Rouge-l
38.97% 18.42% 34.50%
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.