SentenceTransformer based on BAAI/bge-large-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-large-en-v1.5. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-large-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Areeb-02/bge-large-en-v1.5-CosentLoss")
# Run inference
sentences = [
'"Compensation" refers to wages, salaries, commissions, bonuses, and property issued or transferred in exchange for services, as well as compensation for services to owners of pass-through entities, and any other form of remuneration paid to employees for services.',
'"Remuneration" refers to any payment or reward, including but not limited to wages, salaries, commissions, bonuses, and property issued or transferred in exchange for services, as well as compensation for services to owners of pass-through entities, and any other form of compensation paid to employees for services.',
'"Every person engaging in business within the City as an administrative office, as defined below, shall pay an annual administrative office tax measured by its total payroll expense that is attributable to the City:" |',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.3339 |
spearman_cosine | 0.4128 |
pearson_manhattan | 0.3103 |
spearman_manhattan | 0.4167 |
pearson_euclidean | 0.3095 |
spearman_euclidean | 0.4128 |
pearson_dot | 0.3339 |
spearman_dot | 0.4128 |
pearson_max | 0.3339 |
spearman_max | 0.4167 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 132 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 10 tokens
- mean: 41.99 tokens
- max: 126 tokens
- min: 14 tokens
- mean: 42.72 tokens
- max: 162 tokens
- min: 0.25
- mean: 0.93
- max: 1.0
- Samples:
sentence1 sentence2 score "Gross receipts as defined in Section 952.3 shall not include receipts from any sales of real property with respect to which the Real Property Transfer Tax imposed by Article 12-C has been paid to the City."
"Receipts from the sale of real property are exempt from the gross receipts tax if the Real Property Transfer Tax imposed by Article 12-C has been paid to the City."
1.0
For tax years beginning on or after January 1, 2025, any person or combined group, except for a lessor of residential real estate, whose gross receipts within the City did not exceed $5,000,000, adjusted annually in accordance with the increase in the Consumer Price Index: All Urban Consumers for the San Francisco/Oakland/Hayward Area for All Items as reported by the United States Bureau of Labor Statistics, or any successor to that index, as of December 31 of the calendar year two years prior to the tax year, beginning with tax year 2026, and rounded to the nearest $10,000.
For taxable years ending on or before December 31, 2024, using the rules set forth in Sections 956.1 and 956.2, in the manner directed in Sections 953.1 through 953.7, inclusive, and in Section 953.9 of this Article 12-A-1; and
0.95
"San Francisco Gross Receipts" refers to the revenue generated from sales and services within the city limits of San Francisco.
"Revenue generated from sales and services within the city limits of San Francisco"
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 5warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | spearman_cosine |
---|---|---|
3.0 | 51 | 0.4078 |
5.0 | 45 | 0.4128 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Areeb-02/bge-large-en-v1.5-CosentLoss
Base model
BAAI/bge-large-en-v1.5Evaluation results
- Pearson Cosine on Unknownself-reported0.334
- Spearman Cosine on Unknownself-reported0.413
- Pearson Manhattan on Unknownself-reported0.310
- Spearman Manhattan on Unknownself-reported0.417
- Pearson Euclidean on Unknownself-reported0.310
- Spearman Euclidean on Unknownself-reported0.413
- Pearson Dot on Unknownself-reported0.334
- Spearman Dot on Unknownself-reported0.413
- Pearson Max on Unknownself-reported0.334
- Spearman Max on Unknownself-reported0.417