|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- samsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned_samsum_summarization_model |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: samsum |
|
type: samsum |
|
config: samsum |
|
split: validation |
|
args: samsum |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 39.9323 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned_samsum_summarization_model |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the samsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9328 |
|
- Rouge1: 39.9323 |
|
- Rouge2: 18.0293 |
|
- Rougel: 34.3611 |
|
- Rougelsum: 37.3087 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 14 |
|
- eval_batch_size: 14 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 4.5012 | 1.0 | 1050 | 2.1992 | 34.6608 | 14.0886 | 29.8674 | 32.1737 | |
|
| 2.6852 | 2.0 | 2100 | 2.1014 | 38.1793 | 16.0747 | 32.5426 | 35.4332 | |
|
| 2.4933 | 3.0 | 3150 | 2.0319 | 38.4414 | 16.4993 | 32.6973 | 35.8539 | |
|
| 2.3933 | 4.0 | 4200 | 1.9910 | 39.2966 | 17.1718 | 33.5556 | 36.802 | |
|
| 2.3273 | 5.0 | 5250 | 1.9764 | 39.7619 | 17.7287 | 33.9838 | 37.1345 | |
|
| 2.2783 | 6.0 | 6300 | 1.9503 | 39.9351 | 17.8312 | 34.2641 | 37.2625 | |
|
| 2.2543 | 7.0 | 7350 | 1.9350 | 39.9551 | 17.918 | 34.3361 | 37.2039 | |
|
| 2.2383 | 8.0 | 8400 | 1.9328 | 39.9323 | 18.0293 | 34.3611 | 37.3087 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|