ClasificadorV2 / README.md
Armandodelca's picture
End of training
f002b31 verified
|
raw
history blame
3.1 kB
metadata
base_model: dccuchile/bert-base-spanish-wwm-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - recall
model-index:
  - name: ClasificadorV2
    results: []

ClasificadorV2

This model is a fine-tuned version of dccuchile/bert-base-spanish-wwm-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1411
  • Accuracy: 0.5708
  • Off By One Accuracy: 0.9434
  • F1: 0.5724
  • Recall: 0.5708

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 50
  • eval_batch_size: 50
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Off By One Accuracy F1 Recall
1.2177 0.3333 500 1.0309 0.5426 0.93 0.5414 0.5426
1.011 0.6667 1000 0.9836 0.565 0.9336 0.5485 0.565
0.9833 1.0 1500 0.9664 0.5752 0.9448 0.5704 0.5752
0.9004 1.3333 2000 0.9566 0.5728 0.9476 0.5743 0.5728
0.8974 1.6667 2500 0.9583 0.5782 0.9472 0.5784 0.5782
0.8912 2.0 3000 0.9480 0.5816 0.9498 0.5768 0.5816
0.7935 2.3333 3500 0.9768 0.582 0.9472 0.5800 0.582
0.7898 2.6667 4000 0.9831 0.5716 0.9426 0.5715 0.5716
0.7801 3.0 4500 0.9969 0.5736 0.9514 0.5759 0.5736
0.6714 3.3333 5000 1.0782 0.5826 0.9392 0.5795 0.5826
0.6783 3.6667 5500 1.0672 0.5724 0.9456 0.5752 0.5724
0.6764 4.0 6000 1.0762 0.567 0.9458 0.5708 0.567
0.5986 4.3333 6500 1.1349 0.5698 0.9412 0.5684 0.5698
0.5887 4.6667 7000 1.1335 0.5706 0.9398 0.5716 0.5706
0.5798 5.0 7500 1.1411 0.5708 0.9434 0.5724 0.5708

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1