|
--- |
|
language: |
|
- ara |
|
license: apache-2.0 |
|
base_model: openai/whisper-small |
|
tags: |
|
- hf-asr-leaderboard |
|
- generated_from_trainer |
|
datasets: |
|
- AsemBadr/GP |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Small for Quran Recognition |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Quran_Reciters |
|
type: AsemBadr/GP |
|
config: default |
|
split: test |
|
args: 'config: default, split: train' |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 3.2834794567646557 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small for Quran Recognition |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Quran_Reciters dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0210 |
|
- Wer: 3.2835 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 12000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 0.0073 | 1.62 | 500 | 0.0249 | 5.0026 | |
|
| 0.0014 | 3.24 | 1000 | 0.0214 | 4.1086 | |
|
| 0.0008 | 4.85 | 1500 | 0.0221 | 3.9883 | |
|
| 0.0 | 6.47 | 2000 | 0.0180 | 2.9740 | |
|
| 0.0 | 8.09 | 2500 | 0.0177 | 3.0944 | |
|
| 0.0 | 9.71 | 3000 | 0.0178 | 3.0944 | |
|
| 0.0 | 11.33 | 3500 | 0.0179 | 3.1288 | |
|
| 0.0 | 12.94 | 4000 | 0.0179 | 3.1288 | |
|
| 0.0 | 14.56 | 4500 | 0.0181 | 2.8881 | |
|
| 0.0 | 16.18 | 5000 | 0.0184 | 2.9225 | |
|
| 0.0 | 17.8 | 5500 | 0.0186 | 3.0256 | |
|
| 0.0 | 19.42 | 6000 | 0.0188 | 3.1803 | |
|
| 0.0 | 21.04 | 6500 | 0.0190 | 3.1631 | |
|
| 0.0 | 22.65 | 7000 | 0.0191 | 3.1631 | |
|
| 0.0 | 24.27 | 7500 | 0.0192 | 3.1803 | |
|
| 0.0 | 25.89 | 8000 | 0.0192 | 3.1631 | |
|
| 0.0 | 27.51 | 8500 | 0.0196 | 3.2491 | |
|
| 0.0 | 29.13 | 9000 | 0.0199 | 3.2491 | |
|
| 0.0 | 30.74 | 9500 | 0.0202 | 3.2835 | |
|
| 0.0 | 32.36 | 10000 | 0.0204 | 3.2319 | |
|
| 0.0 | 33.98 | 10500 | 0.0207 | 3.2835 | |
|
| 0.0 | 35.6 | 11000 | 0.0209 | 3.2663 | |
|
| 0.0 | 37.22 | 11500 | 0.0210 | 3.2835 | |
|
| 0.0 | 38.83 | 12000 | 0.0210 | 3.2835 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.0.dev0 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.1 |
|
|