whisper-tiny-ashok / README.md
AshokKakunuri's picture
End of training
5024fa2
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: whisper-tiny-ashok
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: PolyAI/minds14
          type: PolyAI/minds14
          config: en-US
          split: train
          args: en-US
        metrics:
          - name: Wer
            type: wer
            value: 0.35301353013530135

whisper-tiny-ashok

This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8440
  • Wer Ortho: 34.6847
  • Wer: 0.3530

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0234 6.67 100 0.6639 34.2986 0.3383
0.003 13.33 200 0.7587 33.9768 0.3401
0.0005 20.0 300 0.7870 34.2342 0.3475
0.0003 26.67 400 0.8045 35.1351 0.3567
0.0002 33.33 500 0.8144 35.5856 0.3610
0.0001 40.0 600 0.8262 35.5212 0.3604
0.0001 46.67 700 0.8341 35.3282 0.3592
0.0001 53.33 800 0.8397 35.1995 0.3579
0.0001 60.0 900 0.8426 34.7490 0.3536
0.0001 66.67 1000 0.8440 34.6847 0.3530

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3