Atharvgarg's picture
Update README.md
ea3bcd4
metadata
license: apache-2.0
tags:
  - summarisation
  - generated_from_trainer
datasets:
  - multi_news
metrics:
  - rouge
model-index:
  - name: >-
      bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-multi-news
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: multi_news
          type: multi_news
          args: default
        metrics:
          - name: Rouge1
            type: rouge
            value: 38.9616

bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-multi-news

This model is a fine-tuned version of mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization on the multi_news dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0185
  • Rouge1: 38.9616
  • Rouge2: 14.1539
  • Rougel: 21.1788
  • Rougelsum: 35.314

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
3.3679 1.0 11243 3.1314 38.4459 13.7777 20.8772 34.8321
3.1115 2.0 22486 3.0589 38.7419 13.9355 20.9911 35.0988
2.9826 3.0 33729 3.0311 38.7345 14.0365 21.0571 35.1604
2.8986 4.0 44972 3.0185 38.9616 14.1539 21.1788 35.314

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1