Swin-dmae-DA5-N-Colab

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4370
  • Accuracy: 0.7812

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 120

Training results

Training Loss Epoch Step Validation Loss Accuracy
6.8626 0.97 24 7.8026 0.125
6.6392 1.98 49 7.5823 0.125
6.3514 2.99 74 6.6653 0.125
5.3109 4.0 99 5.2798 0.125
3.7476 4.97 123 3.6186 0.125
2.7138 5.98 148 1.9377 0.125
1.4116 6.99 173 1.4680 0.125
1.3932 8.0 198 1.3819 0.5
1.2566 8.97 222 1.5912 0.1562
1.1332 9.98 247 1.3336 0.4375
0.9511 10.99 272 1.1492 0.2812
0.8905 12.0 297 1.0571 0.5312
0.8317 12.97 321 0.8474 0.6562
0.6611 13.98 346 0.7520 0.7188
0.5683 14.99 371 0.6656 0.75
0.569 16.0 396 0.8109 0.5312
0.4702 16.97 420 0.7036 0.625
0.4244 17.98 445 0.8169 0.6562
0.3483 18.99 470 0.7076 0.7188
0.3853 20.0 495 0.8644 0.7188
0.3038 20.97 519 0.8653 0.7188
0.2885 21.98 544 1.0444 0.7188
0.2014 22.99 569 1.0684 0.5938
0.2764 24.0 594 1.1422 0.6562
0.2493 24.97 618 1.1025 0.6875
0.2754 25.98 643 1.0371 0.7188
0.1793 26.99 668 1.1624 0.6562
0.1971 28.0 693 1.3177 0.6875
0.1881 28.97 717 1.2813 0.6875
0.167 29.98 742 1.5564 0.625
0.1872 30.99 767 1.3762 0.7188
0.1374 32.0 792 1.4407 0.625
0.1841 32.97 816 1.4038 0.6875
0.167 33.98 841 1.3769 0.6875
0.1614 34.99 866 1.5351 0.6562
0.1835 36.0 891 1.4466 0.6875
0.1917 36.97 915 1.3493 0.75
0.1171 37.98 940 1.4756 0.75
0.163 38.99 965 1.4373 0.6875
0.1688 40.0 990 1.4082 0.75
0.1318 40.97 1014 1.5907 0.6875
0.1107 41.98 1039 1.7462 0.6875
0.1064 42.99 1064 1.8704 0.5625
0.1423 44.0 1089 1.7155 0.5625
0.082 44.97 1113 1.5552 0.7188
0.1012 45.98 1138 1.4190 0.6875
0.1001 46.99 1163 1.6801 0.7188
0.1037 48.0 1188 1.6864 0.7188
0.1089 48.97 1212 1.5225 0.6875
0.0835 49.98 1237 1.9798 0.6875
0.0818 50.99 1262 1.7268 0.6562
0.1134 52.0 1287 1.5996 0.75
0.1115 52.97 1311 1.7281 0.6562
0.0929 53.98 1336 1.6346 0.75
0.0909 54.99 1361 1.4370 0.7812
0.1076 56.0 1386 1.5510 0.7812
0.0948 56.97 1410 1.6383 0.75
0.0914 57.98 1435 1.6938 0.6875
0.0598 58.99 1460 1.6291 0.75
0.0769 60.0 1485 1.6594 0.75
0.0894 60.97 1509 1.6302 0.7812
0.0999 61.98 1534 1.6562 0.7188
0.0759 62.99 1559 1.5989 0.75
0.102 64.0 1584 1.6602 0.7812
0.0864 64.97 1608 1.7386 0.7812
0.0722 65.98 1633 2.0495 0.7188
0.0956 66.99 1658 1.9749 0.6875
0.0698 68.0 1683 2.0090 0.6562
0.0635 68.97 1707 2.1600 0.625
0.0726 69.98 1732 1.8477 0.75
0.0905 70.99 1757 1.9970 0.7188
0.0955 72.0 1782 1.9001 0.75
0.0614 72.97 1806 1.9347 0.6562
0.0721 73.98 1831 1.9007 0.6875
0.0868 74.99 1856 2.0204 0.6562
0.0817 76.0 1881 1.9807 0.7188
0.0533 76.97 1905 1.9782 0.75
0.0682 77.98 1930 1.8320 0.75
0.078 78.99 1955 1.8351 0.7188
0.0991 80.0 1980 1.9694 0.7188
0.0601 80.97 2004 1.8795 0.7188
0.072 81.98 2029 2.0294 0.6562
0.0746 82.99 2054 1.8439 0.7188
0.0547 84.0 2079 1.9321 0.7188
0.0497 84.97 2103 1.8862 0.7812
0.0566 85.98 2128 2.0067 0.6562
0.0353 86.99 2153 2.0957 0.7188
0.0634 88.0 2178 2.1571 0.6562
0.0477 88.97 2202 2.0384 0.6875
0.0513 89.98 2227 1.9146 0.75
0.0717 90.99 2252 1.8838 0.7188
0.0644 92.0 2277 1.9186 0.6875
0.0848 92.97 2301 1.8828 0.7188
0.0393 93.98 2326 1.9442 0.7188
0.046 94.99 2351 1.8866 0.7188
0.0487 96.0 2376 1.9787 0.6875
0.074 96.97 2400 2.0081 0.6875
0.0435 97.98 2425 1.8839 0.75
0.0509 98.99 2450 1.9208 0.7188
0.0571 100.0 2475 1.9770 0.7188
0.0327 100.97 2499 1.9700 0.7188
0.0387 101.98 2524 1.9251 0.75
0.029 102.99 2549 1.9490 0.7188
0.0478 104.0 2574 1.9358 0.7188
0.0587 104.97 2598 1.9197 0.75
0.0523 105.98 2623 1.9309 0.7188
0.0581 106.99 2648 1.9829 0.7188
0.0352 108.0 2673 2.0047 0.6875
0.0373 108.97 2697 1.9897 0.7188
0.0258 109.98 2722 1.9384 0.7188
0.039 110.99 2747 1.9356 0.6875
0.0333 112.0 2772 1.9805 0.7188
0.0641 112.97 2796 1.9814 0.6875
0.0649 113.98 2821 1.9726 0.6875
0.0241 114.99 2846 1.9737 0.6875
0.0356 116.0 2871 1.9856 0.6875
0.0601 116.36 2880 1.9853 0.6875

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
2
Safetensors
Model size
27.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for Augusto777/Swin-dmae-DA5-N-Colab

Finetuned
(120)
this model

Evaluation results