File size: 5,214 Bytes
a3d6c18
 
 
 
 
 
9d63ece
a3d6c18
cd51d32
a3d6c18
 
 
cd51d32
 
 
 
a3d6c18
 
 
 
 
 
 
 
 
 
 
cd51d32
a3d6c18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d63ece
a3d6c18
9d63ece
 
 
 
 
 
 
 
 
a3d6c18
 
 
 
 
 
 
 
cd51d32
a3d6c18
 
 
cd51d32
9d63ece
cd51d32
 
 
 
 
 
 
 
a3d6c18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from pathlib import Path
from typing import Optional, Union

from PIL import Image, ImageDraw
from torch import ge

from internals.util.commons import download_file, download_image, safe_index
from internals.util.config import get_root_dir
from models.pose.body import Body


class PoseDetector:
    # __det_model = "https://comic-assets.s3.ap-south-1.amazonaws.com/models/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth"
    __pose_model = (
        "https://comic-assets.s3.ap-south-1.amazonaws.com/models/body_pose_model.pth"
    )

    __loaded = False

    def load(self):
        if self.__loaded:
            return

        pose_path = Path.home() / ".cache" / self.__pose_model.split("/")[-1]

        download_file(self.__pose_model, pose_path)

        self.body_estimation = Body(str(pose_path))

        self.__loaded = True

    def transform(
        self,
        image: Union[str, Image.Image],
        width: int,
        height: int,
        client_coordinates: Optional[dict],
    ) -> Image.Image:
        "Infer pose coordinates from image, map head and body coordinates to infered ones, create pose"
        if type(image) is str:
            image = download_image(image)

        infer_coordinates = self.infer(image, width, height)
        if client_coordinates and client_coordinates["candidate"]:
            client_coordinates = self.resize_coordinates(
                client_coordinates, 384, 384, width, height
            )
            infer_coordinates = self.map_head_to_body(
                client_coordinates, infer_coordinates
            )

        print(infer_coordinates)

        return self.create_pose(infer_coordinates, width, height)

    def resize_coordinates(
        self, data: dict, ori_width, ori_height, new_width, new_height
    ):
        points = data["candidate"]
        new_points = []

        if new_width > new_height:
            ori_min = min(ori_width, ori_height)
            new_min = min(new_width, new_height)
        else:
            ori_min = max(ori_width, ori_height)
            new_min = max(new_width, new_height)

        for _, pair in enumerate(points):
            x = pair[0] * new_min / ori_min
            y = pair[1] * new_min / ori_min
            new_points.append([x, y])

        return {"candidate": new_points, "subset": data["subset"]}

    def create_pose(self, data: dict, width: int, height: int) -> Image.Image:
        image = Image.new("RGB", (width, height), "black")
        draw = ImageDraw.Draw(image)

        points: list = data["candidate"]
        for pair in self.__pose_logical_map:
            xy = safe_index(points, pair[0] - 1)
            x1y1 = safe_index(points, pair[1] - 1)

            if xy and x1y1:
                draw.line(
                    (xy[0], xy[1], x1y1[0], x1y1[1]),
                    fill=pair[2],
                    width=4,
                )

        for i, point in enumerate(points):
            x = point[0]
            y = point[1]
            draw.ellipse((x - 3, y - 3, x + 3, y + 3), fill=self.__points_color[i])

        return image

    def infer(self, image: Union[str, Image.Image], width, height) -> dict:
        candidate = []
        subset = []

        if type(image) == str:
            image = download_image(image)

        image = image.resize((width, height))

        candidate, subset = self.body_estimation.__call__(image)
        candidate = candidate.tolist()
        subset = subset.tolist()

        candidate = [item[:2] for item in candidate]

        return {"candidate": candidate[:18], "subset": subset[:18]}

    def map_head_to_body(
        self, client_coordinates: dict, infer_coordinates: dict
    ) -> dict:
        client_points = client_coordinates["candidate"]
        infer_points = infer_coordinates["candidate"]

        c_neck = client_points[1]
        i_neck = infer_points[1]

        dx = i_neck[0] - c_neck[0]
        dy = i_neck[1] - c_neck[1]

        for i in range(2, 15):
            point = client_points[i - 1]
            infer_points[i - 1] = [point[0] + dx, point[1] + dy]

        return {"candidate": infer_points, "subset": infer_coordinates["subset"]}

    def __convert_keypoints(self, keypoints):
        return [keypoints[i] for i in self.__kim]

    __kim = [0, 17, 6, 8, 10, 5, 7, 9, 12, 14, 16, 11, 13, 15, 2, 1, 4, 3]
    __pose_logical_map = [
        [1, 2, "#000099"],
        [1, 16, "#330099"],
        [1, 15, "#660099"],
        [16, 18, "#990099"],
        [15, 17, "#990066"],
        [2, 3, "#990001"],
        [2, 6, "#993301"],
        [3, 4, "#996502"],
        [4, 5, "#999900"],
        [6, 7, "#669900"],
        [7, 8, "#349900"],
        [2, 9, "#009900"],
        [2, 12, "#009999"],
        [9, 10, "#009966"],
        [10, 11, "#009966"],
        [12, 13, "#006699"],
        [13, 14, "#013399"],
    ]
    __points_color = [
        "#ff0000",
        "#ff5600",
        "#ffaa01",
        "#ffff00",
        "#aaff03",
        "#53ff00",
        "#03ff00",
        "#03ff55",
        "#03ffaa",
        "#03ffff",
        "#05aaff",
        "#0055ff",
        "#0000ff",
        "#5500ff",
        "#aa00ff",
        "#ff00aa",
        "#ff00ff",
        "#ff0055",
    ]