CM2000112 / external /llite /networks /control_net_lllite_for_train.py
jayparmr's picture
Upload folder using huggingface_hub
ea5c647
# cond_imageをU-Netのforwardで渡すバージョンのControlNet-LLLite検証用実装
# ControlNet-LLLite implementation for verification with cond_image passed in U-Net's forward
import os
import re
from typing import Optional, List, Type
import torch
from library import sdxl_original_unet
# input_blocksに適用するかどうか / if True, input_blocks are not applied
SKIP_INPUT_BLOCKS = False
# output_blocksに適用するかどうか / if True, output_blocks are not applied
SKIP_OUTPUT_BLOCKS = True
# conv2dに適用するかどうか / if True, conv2d are not applied
SKIP_CONV2D = False
# transformer_blocksのみに適用するかどうか。Trueの場合、ResBlockには適用されない
# if True, only transformer_blocks are applied, and ResBlocks are not applied
TRANSFORMER_ONLY = True # if True, SKIP_CONV2D is ignored because conv2d is not used in transformer_blocks
# Trueならattn1とattn2にのみ適用し、ffなどには適用しない / if True, apply only to attn1 and attn2, not to ff etc.
ATTN1_2_ONLY = True
# Trueならattn1のQKV、attn2のQにのみ適用する、ATTN1_2_ONLY指定時のみ有効 / if True, apply only to attn1 QKV and attn2 Q, only valid when ATTN1_2_ONLY is specified
ATTN_QKV_ONLY = True
# Trueならattn1やffなどにのみ適用し、attn2などには適用しない / if True, apply only to attn1 and ff, not to attn2
# ATTN1_2_ONLYと同時にTrueにできない / cannot be True at the same time as ATTN1_2_ONLY
ATTN1_ETC_ONLY = False # True
# transformer_blocksの最大インデックス。Noneなら全てのtransformer_blocksに適用
# max index of transformer_blocks. if None, apply to all transformer_blocks
TRANSFORMER_MAX_BLOCK_INDEX = None
ORIGINAL_LINEAR = torch.nn.Linear
ORIGINAL_CONV2D = torch.nn.Conv2d
def add_lllite_modules(module: torch.nn.Module, in_dim: int, depth, cond_emb_dim, mlp_dim) -> None:
# conditioning1はconditioning imageを embedding する。timestepごとに呼ばれない
# conditioning1 embeds conditioning image. it is not called for each timestep
modules = []
modules.append(ORIGINAL_CONV2D(3, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0)) # to latent (from VAE) size
if depth == 1:
modules.append(torch.nn.ReLU(inplace=True))
modules.append(ORIGINAL_CONV2D(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))
elif depth == 2:
modules.append(torch.nn.ReLU(inplace=True))
modules.append(ORIGINAL_CONV2D(cond_emb_dim // 2, cond_emb_dim, kernel_size=4, stride=4, padding=0))
elif depth == 3:
# kernel size 8は大きすぎるので、4にする / kernel size 8 is too large, so set it to 4
modules.append(torch.nn.ReLU(inplace=True))
modules.append(ORIGINAL_CONV2D(cond_emb_dim // 2, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0))
modules.append(torch.nn.ReLU(inplace=True))
modules.append(ORIGINAL_CONV2D(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))
module.lllite_conditioning1 = torch.nn.Sequential(*modules)
# downで入力の次元数を削減する。LoRAにヒントを得ていることにする
# midでconditioning image embeddingと入力を結合する
# upで元の次元数に戻す
# これらはtimestepごとに呼ばれる
# reduce the number of input dimensions with down. inspired by LoRA
# combine conditioning image embedding and input with mid
# restore to the original dimension with up
# these are called for each timestep
module.lllite_down = torch.nn.Sequential(
ORIGINAL_LINEAR(in_dim, mlp_dim),
torch.nn.ReLU(inplace=True),
)
module.lllite_mid = torch.nn.Sequential(
ORIGINAL_LINEAR(mlp_dim + cond_emb_dim, mlp_dim),
torch.nn.ReLU(inplace=True),
)
module.lllite_up = torch.nn.Sequential(
ORIGINAL_LINEAR(mlp_dim, in_dim),
)
# Zero-Convにする / set to Zero-Conv
torch.nn.init.zeros_(module.lllite_up[0].weight) # zero conv
class LLLiteLinear(ORIGINAL_LINEAR):
def __init__(self, in_features: int, out_features: int, **kwargs):
super().__init__(in_features, out_features, **kwargs)
self.enabled = False
def set_lllite(self, depth, cond_emb_dim, name, mlp_dim, dropout=None, multiplier=1.0):
self.enabled = True
self.lllite_name = name
self.cond_emb_dim = cond_emb_dim
self.dropout = dropout
self.multiplier = multiplier # ignored
in_dim = self.in_features
add_lllite_modules(self, in_dim, depth, cond_emb_dim, mlp_dim)
self.cond_image = None
self.cond_emb = None
def set_cond_image(self, cond_image):
self.cond_image = cond_image
self.cond_emb = None
def forward(self, x):
if not self.enabled:
return super().forward(x)
if self.cond_emb is None:
self.cond_emb = self.lllite_conditioning1(self.cond_image)
cx = self.cond_emb
# reshape / b,c,h,w -> b,h*w,c
n, c, h, w = cx.shape
cx = cx.view(n, c, h * w).permute(0, 2, 1)
cx = torch.cat([cx, self.lllite_down(x)], dim=2)
cx = self.lllite_mid(cx)
if self.dropout is not None and self.training:
cx = torch.nn.functional.dropout(cx, p=self.dropout)
cx = self.lllite_up(cx) * self.multiplier
x = super().forward(x + cx) # ここで元のモジュールを呼び出す / call the original module here
return x
class LLLiteConv2d(ORIGINAL_CONV2D):
def __init__(self, in_channels: int, out_channels: int, kernel_size, **kwargs):
super().__init__(in_channels, out_channels, kernel_size, **kwargs)
self.enabled = False
def set_lllite(self, depth, cond_emb_dim, name, mlp_dim, dropout=None, multiplier=1.0):
self.enabled = True
self.lllite_name = name
self.cond_emb_dim = cond_emb_dim
self.dropout = dropout
self.multiplier = multiplier # ignored
in_dim = self.in_channels
add_lllite_modules(self, in_dim, depth, cond_emb_dim, mlp_dim)
self.cond_image = None
self.cond_emb = None
def set_cond_image(self, cond_image):
self.cond_image = cond_image
self.cond_emb = None
def forward(self, x): # , cond_image=None):
if not self.enabled:
return super().forward(x)
if self.cond_emb is None:
self.cond_emb = self.lllite_conditioning1(self.cond_image)
cx = self.cond_emb
cx = torch.cat([cx, self.down(x)], dim=1)
cx = self.mid(cx)
if self.dropout is not None and self.training:
cx = torch.nn.functional.dropout(cx, p=self.dropout)
cx = self.up(cx) * self.multiplier
x = super().forward(x + cx) # ここで元のモジュールを呼び出す / call the original module here
return x
class SdxlUNet2DConditionModelControlNetLLLite(sdxl_original_unet.SdxlUNet2DConditionModel):
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"]
UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"]
LLLITE_PREFIX = "lllite_unet"
def __init__(self, **kwargs):
super().__init__(**kwargs)
def apply_lllite(
self,
cond_emb_dim: int = 16,
mlp_dim: int = 16,
dropout: Optional[float] = None,
varbose: Optional[bool] = False,
multiplier: Optional[float] = 1.0,
) -> None:
def apply_to_modules(
root_module: torch.nn.Module,
target_replace_modules: List[torch.nn.Module],
) -> List[torch.nn.Module]:
prefix = "lllite_unet"
modules = []
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
is_linear = child_module.__class__.__name__ == "LLLiteLinear"
is_conv2d = child_module.__class__.__name__ == "LLLiteConv2d"
if is_linear or (is_conv2d and not SKIP_CONV2D):
# block indexからdepthを計算: depthはconditioningのサイズやチャネルを計算するのに使う
# block index to depth: depth is using to calculate conditioning size and channels
block_name, index1, index2 = (name + "." + child_name).split(".")[:3]
index1 = int(index1)
if block_name == "input_blocks":
if SKIP_INPUT_BLOCKS:
continue
depth = 1 if index1 <= 2 else (2 if index1 <= 5 else 3)
elif block_name == "middle_block":
depth = 3
elif block_name == "output_blocks":
if SKIP_OUTPUT_BLOCKS:
continue
depth = 3 if index1 <= 2 else (2 if index1 <= 5 else 1)
if int(index2) >= 2:
depth -= 1
else:
raise NotImplementedError()
lllite_name = prefix + "." + name + "." + child_name
lllite_name = lllite_name.replace(".", "_")
if TRANSFORMER_MAX_BLOCK_INDEX is not None:
p = lllite_name.find("transformer_blocks")
if p >= 0:
tf_index = int(lllite_name[p:].split("_")[2])
if tf_index > TRANSFORMER_MAX_BLOCK_INDEX:
continue
# time embは適用外とする
# attn2のconditioning (CLIPからの入力) はshapeが違うので適用できない
# time emb is not applied
# attn2 conditioning (input from CLIP) cannot be applied because the shape is different
if "emb_layers" in lllite_name or (
"attn2" in lllite_name and ("to_k" in lllite_name or "to_v" in lllite_name)
):
continue
if ATTN1_2_ONLY:
if not ("attn1" in lllite_name or "attn2" in lllite_name):
continue
if ATTN_QKV_ONLY:
if "to_out" in lllite_name:
continue
if ATTN1_ETC_ONLY:
if "proj_out" in lllite_name:
pass
elif "attn1" in lllite_name and (
"to_k" in lllite_name or "to_v" in lllite_name or "to_out" in lllite_name
):
pass
elif "ff_net_2" in lllite_name:
pass
else:
continue
child_module.set_lllite(depth, cond_emb_dim, lllite_name, mlp_dim, dropout, multiplier)
modules.append(child_module)
return modules
target_modules = SdxlUNet2DConditionModelControlNetLLLite.UNET_TARGET_REPLACE_MODULE
if not TRANSFORMER_ONLY:
target_modules = target_modules + SdxlUNet2DConditionModelControlNetLLLite.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3
# create module instances
self.lllite_modules = apply_to_modules(self, target_modules)
print(f"enable ControlNet LLLite for U-Net: {len(self.lllite_modules)} modules.")
# def prepare_optimizer_params(self):
def prepare_params(self):
train_params = []
non_train_params = []
for name, p in self.named_parameters():
if "lllite" in name:
train_params.append(p)
else:
non_train_params.append(p)
print(f"count of trainable parameters: {len(train_params)}")
print(f"count of non-trainable parameters: {len(non_train_params)}")
for p in non_train_params:
p.requires_grad_(False)
# without this, an error occurs in the optimizer
# RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
non_train_params[0].requires_grad_(True)
for p in train_params:
p.requires_grad_(True)
return train_params
# def prepare_grad_etc(self):
# self.requires_grad_(True)
# def on_epoch_start(self):
# self.train()
def get_trainable_params(self):
return [p[1] for p in self.named_parameters() if "lllite" in p[0]]
def save_lllite_weights(self, file, dtype, metadata):
if metadata is not None and len(metadata) == 0:
metadata = None
org_state_dict = self.state_dict()
# copy LLLite keys from org_state_dict to state_dict with key conversion
state_dict = {}
for key in org_state_dict.keys():
# split with ".lllite"
pos = key.find(".lllite")
if pos < 0:
continue
lllite_key = SdxlUNet2DConditionModelControlNetLLLite.LLLITE_PREFIX + "." + key[:pos]
lllite_key = lllite_key.replace(".", "_") + key[pos:]
lllite_key = lllite_key.replace(".lllite_", ".")
state_dict[lllite_key] = org_state_dict[key]
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)
def load_lllite_weights(self, file, non_lllite_unet_sd=None):
r"""
LLLiteの重みを読み込まない(initされた値を使う)場合はfileにNoneを指定する。
この場合、non_lllite_unet_sdにはU-Netのstate_dictを指定する。
If you do not want to load LLLite weights (use initialized values), specify None for file.
In this case, specify the state_dict of U-Net for non_lllite_unet_sd.
"""
if not file:
state_dict = self.state_dict()
for key in non_lllite_unet_sd:
if key in state_dict:
state_dict[key] = non_lllite_unet_sd[key]
info = self.load_state_dict(state_dict, False)
return info
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
# module_name = module_name.replace("_block", "@blocks")
# module_name = module_name.replace("_layer", "@layer")
# module_name = module_name.replace("to_", "to@")
# module_name = module_name.replace("time_embed", "time@embed")
# module_name = module_name.replace("label_emb", "label@emb")
# module_name = module_name.replace("skip_connection", "skip@connection")
# module_name = module_name.replace("proj_in", "proj@in")
# module_name = module_name.replace("proj_out", "proj@out")
pattern = re.compile(r"(_block|_layer|to_|time_embed|label_emb|skip_connection|proj_in|proj_out)")
# convert to lllite with U-Net state dict
state_dict = non_lllite_unet_sd.copy() if non_lllite_unet_sd is not None else {}
for key in weights_sd.keys():
# split with "."
pos = key.find(".")
if pos < 0:
continue
module_name = key[:pos]
weight_name = key[pos + 1 :] # exclude "."
module_name = module_name.replace(SdxlUNet2DConditionModelControlNetLLLite.LLLITE_PREFIX + "_", "")
# これはうまくいかない。逆変換を考えなかった設計が悪い / this does not work well. bad design because I didn't think about inverse conversion
# module_name = module_name.replace("_", ".")
# ださいけどSDXLのU-Netの "_" を "@" に変換する / ugly but convert "_" of SDXL U-Net to "@"
matches = pattern.findall(module_name)
if matches is not None:
for m in matches:
print(module_name, m)
module_name = module_name.replace(m, m.replace("_", "@"))
module_name = module_name.replace("_", ".")
module_name = module_name.replace("@", "_")
lllite_key = module_name + ".lllite_" + weight_name
state_dict[lllite_key] = weights_sd[key]
info = self.load_state_dict(state_dict, False)
return info
def forward(self, x, timesteps=None, context=None, y=None, cond_image=None, **kwargs):
for m in self.lllite_modules:
m.set_cond_image(cond_image)
return super().forward(x, timesteps, context, y, **kwargs)
def replace_unet_linear_and_conv2d():
print("replace torch.nn.Linear and torch.nn.Conv2d to LLLiteLinear and LLLiteConv2d in U-Net")
sdxl_original_unet.torch.nn.Linear = LLLiteLinear
sdxl_original_unet.torch.nn.Conv2d = LLLiteConv2d
if __name__ == "__main__":
# デバッグ用 / for debug
# sdxl_original_unet.USE_REENTRANT = False
replace_unet_linear_and_conv2d()
# test shape etc
print("create unet")
unet = SdxlUNet2DConditionModelControlNetLLLite()
print("enable ControlNet-LLLite")
unet.apply_lllite(32, 64, None, False, 1.0)
unet.to("cuda") # .to(torch.float16)
# from safetensors.torch import load_file
# model_sd = load_file(r"E:\Work\SD\Models\sdxl\sd_xl_base_1.0_0.9vae.safetensors")
# unet_sd = {}
# # copy U-Net keys from unet_state_dict to state_dict
# prefix = "model.diffusion_model."
# for key in model_sd.keys():
# if key.startswith(prefix):
# converted_key = key[len(prefix) :]
# unet_sd[converted_key] = model_sd[key]
# info = unet.load_lllite_weights("r:/lllite_from_unet.safetensors", unet_sd)
# print(info)
# print(unet)
# print number of parameters
params = unet.prepare_params()
print("number of parameters", sum(p.numel() for p in params))
# print("type any key to continue")
# input()
unet.set_use_memory_efficient_attention(True, False)
unet.set_gradient_checkpointing(True)
unet.train() # for gradient checkpointing
# # visualize
# import torchviz
# print("run visualize")
# controlnet.set_control(conditioning_image)
# output = unet(x, t, ctx, y)
# print("make_dot")
# image = torchviz.make_dot(output, params=dict(controlnet.named_parameters()))
# print("render")
# image.format = "svg" # "png"
# image.render("NeuralNet") # すごく時間がかかるので注意 / be careful because it takes a long time
# input()
import bitsandbytes
optimizer = bitsandbytes.adam.Adam8bit(params, 1e-3)
scaler = torch.cuda.amp.GradScaler(enabled=True)
print("start training")
steps = 10
batch_size = 1
sample_param = [p for p in unet.named_parameters() if ".lllite_up." in p[0]][0]
for step in range(steps):
print(f"step {step}")
conditioning_image = torch.rand(batch_size, 3, 1024, 1024).cuda() * 2.0 - 1.0
x = torch.randn(batch_size, 4, 128, 128).cuda()
t = torch.randint(low=0, high=10, size=(batch_size,)).cuda()
ctx = torch.randn(batch_size, 77, 2048).cuda()
y = torch.randn(batch_size, sdxl_original_unet.ADM_IN_CHANNELS).cuda()
with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16):
output = unet(x, t, ctx, y, conditioning_image)
target = torch.randn_like(output)
loss = torch.nn.functional.mse_loss(output, target)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
print(sample_param)
# from safetensors.torch import save_file
# print("save weights")
# unet.save_lllite_weights("r:/lllite_from_unet.safetensors", torch.float16, None)