license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- Himitsui/Kaiju-11B
- Sao10K/Fimbulvetr-11B-v2
- decapoda-research/Antares-11b-v2
- beberik/Nyxene-v3-11B
base_model:
- Himitsui/Kaiju-11B
- Sao10K/Fimbulvetr-11B-v2
- decapoda-research/Antares-11b-v2
- beberik/Nyxene-v3-11B
model-index:
- name: Umbra-v3-MoE-4x11b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.43
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v3-MoE-4x11b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.83
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v3-MoE-4x11b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.99
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v3-MoE-4x11b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 69.3
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v3-MoE-4x11b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.9
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v3-MoE-4x11b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.08
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v3-MoE-4x11b
name: Open LLM Leaderboard
ExllamaV2 version of the model created by Steelskull!
Original Model https://huggingface.co/Steelskull/Umbra-v3-MoE-4x11b
calibration dataset here.
Requires ExllamaV2, which is being developed by turboderp https://github.com/turboderp/exllamav2 under an MIT license.
DONT USE MAIN BRANCH - Test using 8192 measurement length and rp dataset. Perplexity came out too high. Will update with a normal length rp later.
Branch is 8b8h using wikitext at 4096 length
Umbra-v3-MoE-4x11b
Creator: SteelSkull
About Umbra-v3-MoE-4x11b: A Mixture of Experts model designed for general assistance with a special knack for storytelling and RP/ERP
Integrates models from notable sources for enhanced performance in diverse tasks.
Source Models:
Update-Log:
The [Umbra Series] keeps rolling out from the [Lumosia Series] garage, aiming to be your digital Alfred with a side of Shakespeare for those RP/ERP nights.
What's Fresh in v3?
Didn’t reinvent the wheel, just slapped on some fancier rims. Upgraded the models and tweaked the prompts a bit. Now, Umbra's not just a general use LLM; it's also focused on spinning stories and "Stories".
Negative Prompt Minimalism
Got the prompts to do a bit of a diet and gym routine—more beef on the positives, trimming down the negatives as usual with a dash of my midnight musings.
Still Guessing, Aren’t We?
Just so we're clear, "v3" is not the messiah of updates. It’s another experiment in the saga.
Dive into Umbra v3 and toss your two cents my way. Your feedback is the caffeine in my code marathon.
Metric | Value |
---|---|
Avg. | 73.09 |
AI2 Reasoning Challenge (25-Shot) | 68.43 |
HellaSwag (10-Shot) | 87.83 |
MMLU (5-Shot) | 65.99 |
TruthfulQA (0-shot) | 69.30 |
Winogrande (5-shot) | 83.90 |
GSM8k (5-shot) | 63.08 |