|
--- |
|
pipeline_tag: any-to-any |
|
license: apache-2.0 |
|
library_name: transformers |
|
--- |
|
|
|
<div align='center'> |
|
<h1>Emu3: Next-Token Prediction is All You Need</h1h1> |
|
<h3></h3> |
|
|
|
[Emu3 Team, BAAI](https://www.baai.ac.cn/english.html) |
|
|
|
| [Project Page](https://emu.baai.ac.cn) | [Paper](https://huggingface.co/papers/2409.18869) | [🤗HF Models](https://huggingface.co/collections/BAAI/emu3-66f4e64f70850ff358a2e60f) | [github](https://github.com/baaivision/Emu3) |
|
| [Demo](https://huggingface.co/spaces/BAAI/Emu3) | |
|
|
|
|
|
</div> |
|
|
|
<div align='center'> |
|
<img src="https://github.com/baaivision/Emu3/blob/main/assets/arch.png?raw=True" class="interpolation-image" alt="arch." height="80%" width="70%" /> |
|
</div> |
|
|
|
We introduce **Emu3**, a new suite of state-of-the-art multimodal models trained solely with **<i>next-token prediction</i>**! By tokenizing images, text, and videos into a discrete space, we train a single transformer from scratch on a mixture of multimodal sequences. |
|
|
|
### Emu3 excels in both generation and perception |
|
**Emu3** outperforms several well-established task-specific models in both generation and perception tasks, surpassing flagship open models such as SDXL, LLaVA-1.6 and OpenSora-1.2, while eliminating the need for diffusion or compositional architectures. |
|
|
|
<div align='center'> |
|
<img src="https://github.com/baaivision/Emu3/blob/main/assets/comparison.png?raw=True" class="interpolation-image" alt="comparison." height="80%" width="80%" /> |
|
</div> |
|
|
|
### Highlights |
|
|
|
- **Emu3** is capable of generating high-quality images following the text input, by simply predicting the next vision token. The model naturally supports flexible resolutions and styles. |
|
- **Emu3** shows strong vision-language understanding capabilities to see the physical world and provides coherent text responses. Notably, this capability is achieved without depending on a CLIP and a pretrained LLM. |
|
- **Emu3** simply generates a video causally by predicting the next token in a video sequence, unlike the video diffusion model as in Sora. With a video in context, Emu3 can also naturally extend the video and predict what will happen next. |
|
|
|
|
|
|
|
#### Quickstart |
|
|
|
```python |
|
from PIL import Image |
|
from transformers import AutoTokenizer, AutoModel, AutoImageProcessor, AutoModelForCausalLM |
|
from transformers.generation.configuration_utils import GenerationConfig |
|
from transformers.generation import LogitsProcessorList, PrefixConstrainedLogitsProcessor, UnbatchedClassifierFreeGuidanceLogitsProcessor |
|
import torch |
|
|
|
import sys |
|
sys.path.append(PATH_TO_BAAI_Emu3-Gen_MODEL) |
|
from processing_emu3 import Emu3Processor |
|
|
|
# model path |
|
EMU_HUB = "BAAI/Emu3-Gen" |
|
VQ_HUB = "BAAI/Emu3-VisionTokenizer" |
|
|
|
# prepare model and processor |
|
model = AutoModelForCausalLM.from_pretrained( |
|
EMU_HUB, |
|
device_map="cuda:0", |
|
torch_dtype=torch.bfloat16, |
|
attn_implementation="flash_attention_2", |
|
trust_remote_code=True, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(EMU_HUB, trust_remote_code=True) |
|
image_processor = AutoImageProcessor.from_pretrained(VQ_HUB, trust_remote_code=True) |
|
image_tokenizer = AutoModel.from_pretrained(VQ_HUB, device_map="cuda:0", trust_remote_code=True).eval() |
|
processor = Emu3Processor(image_processor, image_tokenizer, tokenizer) |
|
|
|
# prepare input |
|
POSITIVE_PROMPT = " masterpiece, film grained, best quality." |
|
NEGATIVE_PROMPT = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry." |
|
|
|
classifier_free_guidance = 3.0 |
|
prompt = "a portrait of young girl." |
|
prompt += POSITIVE_PROMPT |
|
|
|
kwargs = dict( |
|
mode='G', |
|
ratio="1:1", |
|
image_area=model.config.image_area, |
|
return_tensors="pt", |
|
) |
|
pos_inputs = processor(text=prompt, **kwargs) |
|
neg_inputs = processor(text=NEGATIVE_PROMPT, **kwargs) |
|
|
|
# prepare hyper parameters |
|
GENERATION_CONFIG = GenerationConfig( |
|
use_cache=True, |
|
eos_token_id=model.config.eos_token_id, |
|
pad_token_id=model.config.pad_token_id, |
|
max_new_tokens=40960, |
|
do_sample=True, |
|
top_k=2048, |
|
) |
|
|
|
h, w = pos_inputs.image_size[0] |
|
constrained_fn = processor.build_prefix_constrained_fn(h, w) |
|
logits_processor = LogitsProcessorList([ |
|
UnbatchedClassifierFreeGuidanceLogitsProcessor( |
|
classifier_free_guidance, |
|
model, |
|
unconditional_ids=neg_inputs.input_ids.to("cuda:0"), |
|
), |
|
PrefixConstrainedLogitsProcessor( |
|
constrained_fn , |
|
num_beams=1, |
|
), |
|
]) |
|
|
|
# generate |
|
outputs = model.generate( |
|
pos_inputs.input_ids.to("cuda:0"), |
|
GENERATION_CONFIG, |
|
logits_processor=logits_processor |
|
) |
|
|
|
mm_list = processor.decode(outputs[0]) |
|
for idx, im in enumerate(mm_list): |
|
if not isinstance(im, Image.Image): |
|
continue |
|
im.save(f"result_{idx}.png") |
|
|
|
``` |