NLP_whole_dataseet_
This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.0225
- eval_accuracy: 0.9954
- eval_precision: 0.9951
- eval_recall: 0.9960
- eval_f1: 0.9955
- eval_runtime: 0.792
- eval_samples_per_second: 275.256
- eval_steps_per_second: 8.839
- epoch: 5.0
- step: 275
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 8
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for BDAIO/NLP_whole_dataseet_
Base model
google-bert/bert-base-multilingual-uncased