NLP_whole_dataseet_

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.0225
  • eval_accuracy: 0.9954
  • eval_precision: 0.9951
  • eval_recall: 0.9960
  • eval_f1: 0.9955
  • eval_runtime: 0.792
  • eval_samples_per_second: 275.256
  • eval_steps_per_second: 8.839
  • epoch: 5.0
  • step: 275

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 8

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
507M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for BDAIO/NLP_whole_dataseet_

Finetuned
(1692)
this model