|
--- |
|
license: apache-2.0 |
|
metrics: |
|
- cer |
|
--- |
|
# Belle-whisper-large-v2-zh |
|
Fine tune whisper-large-v2 to improve Chinese speech recognition, Belle-whisper-large-v2-zh has 30-70% relative improvements on Chinese ASR benchmark(AISHELL1, AISHELL2, WENETSPEECH, HKUST). |
|
|
|
## Usage |
|
```python |
|
|
|
from transformers import pipeline |
|
|
|
transcriber = pipeline( |
|
"automatic-speech-recognition", |
|
model="BELLE-2/Belle-whisper-large-v2-zh" |
|
) |
|
|
|
transcriber.model.config.forced_decoder_ids = ( |
|
transcriber.tokenizer.get_decoder_prompt_ids( |
|
language="zh", |
|
task="transcribe" |
|
) |
|
) |
|
|
|
transcription = transcriber("my_audio.wav") |
|
|
|
``` |
|
|
|
## Fine-tuning |
|
| Model | (Re)Sample Rate | Train Datasets | Fine-tuning (full or peft) | |
|
|:----------------:|:-------:|:----------------------------------------------------------:|:-----------:| |
|
| Belle-whisper-large-v2-zh | 16KHz | [AISHELL-1](https://openslr.magicdatatech.com/resources/33/) [AISHELL-2](https://www.aishelltech.com/aishell_2) [WenetSpeech](https://wenet.org.cn/WenetSpeech/) [HKUST](https://catalog.ldc.upenn.edu/LDC2005S15) | [full fine-tuning](https://github.com/shuaijiang/Whisper-Finetune) | |
|
|
|
|
|
|
|
|
|
## CER |
|
| Model | Language Tag | aishell_1_test |aishell_2_test| wenetspeech_net | wenetspeech_meeting | HKUST_dev| |
|
|:----------------:|:-------:|:-----------:|:-----------:|:--------:|:-----------:|:-------:| |
|
| whisper-large-v2 | Chinese | 0.08818 | 0.06183 | 0.12343 | 0.26413 | 0.31917 | |
|
| Belle-whisper-large-v2-zh | Chinese | 0.02549 | 0.03746 | 0.08503 | 0.14598 | 0.16289 | |
|
|
|
|