shawgpt-ft
This model is a fine-tuned version of TheBloke/Mistral-7B-Instruct-v0.2-GPTQ on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.3129
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 14
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.4825 | 1.0 | 13 | 3.0919 |
2.8203 | 2.0 | 26 | 2.5023 |
2.1986 | 3.0 | 39 | 1.9872 |
1.7371 | 4.0 | 52 | 1.6736 |
1.4784 | 5.0 | 65 | 1.4733 |
1.3057 | 6.0 | 78 | 1.4058 |
1.2249 | 7.0 | 91 | 1.3614 |
1.217 | 8.0 | 104 | 1.3388 |
1.1828 | 9.0 | 117 | 1.3264 |
1.1419 | 10.0 | 130 | 1.3190 |
1.1518 | 11.0 | 143 | 1.3171 |
1.1042 | 12.0 | 156 | 1.3147 |
1.1249 | 13.0 | 169 | 1.3136 |
1.0984 | 14.0 | 182 | 1.3129 |
Framework versions
- PEFT 0.13.2
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for BIStudent/shawgpt-ft
Base model
mistralai/Mistral-7B-Instruct-v0.2
Quantized
TheBloke/Mistral-7B-Instruct-v0.2-GPTQ