Edit model card

hubert-base-ft-keyword-spotting

This model is a fine-tuned version of facebook/hubert-base-ls960 on the superb dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0774
  • Accuracy: 0.9819

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 0
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0422 1.0 399 0.8999 0.6918
0.3296 2.0 798 0.1505 0.9778
0.2088 3.0 1197 0.0901 0.9816
0.202 4.0 1596 0.0848 0.9813
0.1535 5.0 1995 0.0774 0.9819

Framework versions

  • Transformers 4.12.0.dev0
  • Pytorch 1.9.1+cu111
  • Datasets 1.14.0
  • Tokenizers 0.10.3
Downloads last month
5
Inference Examples
Unable to determine this model's library. Check the docs .

Dataset used to train BSJ2004/FSLAKWS_testmode