Whisper tiny AR - BH

This model is a fine-tuned version of openai/whisper-tiny on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0095
  • Wer: 0.1037
  • Cer: 0.0382

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.0104 1.0 407 0.0098 0.1182 0.0449
0.0068 2.0 814 0.0088 0.1055 0.0373
0.0075 3.0 1221 0.0088 0.1008 0.0356
0.0057 4.0 1628 0.0091 0.0992 0.0345
0.0047 5.0 2035 0.0097 0.0997 0.0349
0.0038 6.0 2442 0.0103 0.0994 0.0340
0.0024 7.0 2849 0.0109 0.1033 0.0357
0.0031 8.0 3256 0.0113 0.1015 0.0351
0.0014 9.0 3663 0.0118 0.1003 0.0350
0.0018 10.0 4070 0.0123 0.1014 0.0349
0.0013 11.0 4477 0.0128 0.1122 0.0405
0.0011 12.0 4884 0.0130 0.1037 0.0379
0.0004 13.0 5291 0.0132 0.1032 0.0379
0.0019 14.0 5698 0.0141 0.1055 0.0397
0.001 14.9643 6090 0.0135 0.1017 0.0371

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
222
Safetensors
Model size
37.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Baselhany/Graduation_Project_Whisper_tiny

Finetuned
(1303)
this model