Whisper tiny AR - BH
This model is a fine-tuned version of openai/whisper-tiny on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set:
- Loss: 0.0288
- Wer: 15.7981
- Cer: 4.8926
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.0015 | 1.0 | 157 | 0.0176 | 17.0508 | 5.4660 |
0.0007 | 2.0 | 314 | 0.0205 | 17.9173 | 5.9564 |
0.0007 | 3.0 | 471 | 0.0241 | 20.2647 | 6.7086 |
0.0009 | 4.0 | 628 | 0.0254 | 20.3409 | 6.5112 |
0.0007 | 5.0 | 785 | 0.0263 | 20.7123 | 6.4479 |
0.0006 | 6.0 | 942 | 0.0279 | 19.9695 | 6.0607 |
0.0004 | 7.0 | 1099 | 0.0269 | 20.1219 | 6.6016 |
0.0003 | 8.0 | 1256 | 0.0280 | 18.9982 | 6.0934 |
0.0003 | 9.0 | 1413 | 0.0294 | 20.1505 | 6.0196 |
0.0001 | 10.0 | 1570 | 0.0286 | 19.0791 | 6.0391 |
0.0 | 11.0 | 1727 | 0.0308 | 18.3935 | 5.9303 |
0.0 | 12.0 | 1884 | 0.0302 | 17.2793 | 5.5675 |
0.0 | 13.0 | 2041 | 0.0308 | 16.5556 | 5.3800 |
0.0 | 14.0 | 2198 | 0.0311 | 16.3984 | 5.2890 |
0.0 | 14.9088 | 2340 | 0.0312 | 16.4365 | 5.3134 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 55
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Baselhany/Graduation_Project_Whisper_tiny_fine_tune_Quran
Base model
openai/whisper-tiny