Whisper tiny AR - BH

This model is a fine-tuned version of openai/whisper-tiny on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0288
  • Wer: 15.7981
  • Cer: 4.8926

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.0015 1.0 157 0.0176 17.0508 5.4660
0.0007 2.0 314 0.0205 17.9173 5.9564
0.0007 3.0 471 0.0241 20.2647 6.7086
0.0009 4.0 628 0.0254 20.3409 6.5112
0.0007 5.0 785 0.0263 20.7123 6.4479
0.0006 6.0 942 0.0279 19.9695 6.0607
0.0004 7.0 1099 0.0269 20.1219 6.6016
0.0003 8.0 1256 0.0280 18.9982 6.0934
0.0003 9.0 1413 0.0294 20.1505 6.0196
0.0001 10.0 1570 0.0286 19.0791 6.0391
0.0 11.0 1727 0.0308 18.3935 5.9303
0.0 12.0 1884 0.0302 17.2793 5.5675
0.0 13.0 2041 0.0308 16.5556 5.3800
0.0 14.0 2198 0.0311 16.3984 5.2890
0.0 14.9088 2340 0.0312 16.4365 5.3134

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
55
Safetensors
Model size
37.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Baselhany/Graduation_Project_Whisper_tiny_fine_tune_Quran

Finetuned
(1343)
this model