Whisper base AR - BH

This model is a fine-tuned version of openai/whisper-base on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0120
  • Wer: 11.5780
  • Cer: 3.7937

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • training_steps: 18600
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Cer Validation Loss Wer
0.0292 0.0704 200 10.4216 0.0261 33.1910
0.0197 0.1408 400 8.7672 0.0199 25.3217
0.0169 0.2112 600 8.0395 0.0169 22.2440
0.0144 0.2817 800 6.0399 0.0161 18.5408
0.011 0.3521 1000 5.5138 0.0148 17.3477
0.0092 0.4225 1200 5.0008 0.0136 16.7994
0.0087 0.4929 1400 4.7966 0.0134 14.8045
0.0078 0.5633 1600 4.5948 0.0128 14.1680
0.0056 0.6337 1800 4.7204 0.0112 13.6886
0.0059 0.7042 2000 4.2984 0.0117 13.2643
0.0052 0.7746 2200 4.0641 0.0111 12.5892
0.0041 0.8450 2400 3.8254 0.0109 11.9527
0.0043 0.9154 2600 3.8392 0.0105 11.8177
0.004 0.9858 2800 3.7978 0.0105 11.7406
0.0039 1.0563 3000 3.9949 0.0114 12.3219
0.0038 1.1267 3200 3.9334 0.0111 11.8535
0.0031 1.1972 3400 3.9939 0.0111 11.9803
0.0034 1.2676 3600 3.9068 0.0109 12.0960
0.0027 1.3380 3800 3.8959 0.0110 12.0519
0.0035 1.4084 4000 3.9113 0.0109 12.0464
0.0033 1.4788 4200 3.8424 0.0116 11.8287
0.003 1.5492 4400 4.0442 0.0115 12.4432
0.0033 1.6197 4600 3.8276 0.0113 11.9197
0.0028 1.6901 4800 3.8978 0.0113 11.9445
0.003 1.7605 5000 3.8286 0.0114 11.8590
0.0029 1.8309 5200 3.8360 0.0112 11.8838
0.0025 1.9013 5400 3.7738 0.0112 11.7902
0.0026 1.9717 5600 3.7863 0.0112 11.7406
0.0027 2.0422 5800 3.6681 0.0115 11.6689
0.0021 2.1127 6000 3.8388 0.0118 11.7543
0.0018 2.1831 6200 3.8116 0.0114 11.5918
0.0021 2.2535 6400 3.7619 0.0114 11.5835
0.0024 2.3239 6600 3.7517 0.0113 11.5532
0.0022 2.3943 6800 3.7296 0.0114 11.5091
0.0017 2.4647 7000 3.7357 0.0114 11.5670
0.0023 2.5352 7200 3.7283 0.0114 11.5477
0.0022 2.6056 7400 3.8404 0.0114 11.9059
0.0025 2.6760 7600 3.8555 0.0114 11.8205
0.0023 2.7464 7800 3.7853 0.0113 11.6496
0.0018 2.8168 8000 3.7498 0.0114 11.6303
0.0017 2.8872 8200 3.7559 0.0114 11.6193
0.0021 2.9577 8400 3.7693 0.0114 11.5642
0.0026 3.0282 8600 3.7658 0.0116 11.5091
0.0022 3.0986 8800 3.8430 0.0117 11.6028
0.0012 3.1690 9000 3.7030 0.0114 11.5642
0.0019 3.2394 9200 3.8065 0.0116 11.6882
0.0017 3.3098 9400 3.6713 0.0114 11.4402
0.0013 3.3802 9600 3.7238 0.0115 11.5504
0.0014 3.4507 9800 3.7078 0.0115 11.4623
0.0018 3.5211 10000 3.7427 0.0115 11.5091
0.0018 3.5915 10200 3.8664 0.0117 11.7902
0.0016 3.6619 10400 3.7568 0.0116 11.6303
0.0016 3.7323 10600 3.7693 0.0116 11.6111
0.0014 3.8027 10800 3.7520 0.0116 11.4402
0.0015 3.8732 11000 3.7587 0.0116 11.4678
0.0017 3.9436 11200 3.8017 0.0116 11.5587
0.002 4.0141 11400 3.7575 0.0116 11.4843
0.0014 4.0845 11600 3.7808 0.0117 11.5670
0.0015 4.1549 11800 3.7123 0.0117 11.5064
0.0014 4.2253 12000 3.7456 0.0117 11.5697
0.0014 4.2957 12200 3.7924 0.0117 11.6607
0.0017 4.3662 12400 3.7933 0.0117 11.6579
0.0013 4.4366 12600 3.8084 0.0117 11.6717
0.0021 4.5070 12800 3.9065 0.0118 11.9086
0.0014 4.5774 13000 3.9045 0.0118 11.7846
0.0015 4.6478 13200 3.7975 0.0119 11.6469
0.0012 4.7182 13400 3.7414 0.0118 11.5697
0.0014 4.7887 13600 3.7917 0.0118 11.5311
0.0016 4.8591 13800 3.7719 0.0118 11.4953
0.0015 4.9295 14000 3.7857 0.0118 11.5201
0.0015 4.9999 14200 3.7834 0.0118 11.5119
0.0014 5.0704 14400 3.7517 0.0119 11.4512
0.0009 5.1408 14600 3.6793 0.0118 11.4154
0.0012 5.2112 14800 3.7369 0.0118 11.3989
0.0015 5.2817 15000 3.7087 0.0119 11.4402
0.0015 5.3521 15200 3.7049 0.0119 11.4843
0.001 5.4225 15400 3.7187 0.0119 11.4788
0.0013 5.4929 15600 3.7225 0.0119 11.4650
0.0015 5.5633 15800 3.7289 0.0119 11.4926
0.0014 5.6337 16000 3.7277 0.0120 11.4650
0.0015 5.7042 16200 3.7491 0.0119 11.5449
0.0013 5.7746 16400 3.7616 0.0119 11.5229
0.0013 5.8450 16600 3.7430 0.0119 11.5256
0.0014 5.9154 16800 3.7591 0.0119 11.5064
0.0011 5.9858 17000 3.7655 0.0119 11.5201
0.0014 6.0563 17200 0.0119 11.6441 3.8190
0.0014 6.1267 17400 0.0119 11.5587 3.7376
0.0013 6.1972 17600 0.0119 11.6111 3.8094
0.0011 6.2676 17800 0.0120 11.6827 3.8142
0.0014 6.3380 18000 0.0120 11.5339 3.7004
0.0014 6.4084 18200 0.0120 11.5449 3.7430
0.0012 6.4788 18400 0.0120 11.5670 3.7635
0.0012 6.5492 18600 0.0120 11.5780 3.7937

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
54
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Baselhany/Whisper_base_fine_tune_Quran

Finetuned
(429)
this model