Baselhany's picture
Training finished
275ab68 verified
|
raw
history blame
2.62 kB
metadata
library_name: transformers
language:
  - ar
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: Whisper tiny AR - BH
    results: []

Whisper tiny AR - BH

This model is a fine-tuned version of openai/whisper-tiny on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0121
  • Wer: 13.2495
  • Cer: 4.3278

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Cer Validation Loss Wer
0.0258 0.1408 400 52.2218 0.0246 104.9348
0.0177 0.2817 800 10.2633 0.0184 26.2089
0.0116 0.4225 1200 7.3210 0.0160 20.9517
0.0101 0.5633 1600 5.8227 0.0141 17.5020
0.008 0.7042 2000 5.1235 0.0127 16.3695
0.0057 0.8450 2400 4.8168 0.0119 15.2343
0.0056 0.9858 2800 4.6678 0.0116 14.6364
0.0071 1.1267 3200 0.0135 15.8929 5.3042
0.0059 1.2676 3600 0.0132 15.7165 5.0437
0.0056 1.4084 4000 0.0124 14.5758 5.3648
0.0041 1.5492 4400 0.0122 14.2259 4.7531
0.0038 1.6901 4800 0.0120 13.8043 4.7431
0.004 1.8309 5200 0.0119 14.1818 4.9569
0.0036 1.9717 5600 0.0118 14.0743 4.9171

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0